海南省定安中学2024届数学高二下期末综合测试试题含解析_第1页
海南省定安中学2024届数学高二下期末综合测试试题含解析_第2页
海南省定安中学2024届数学高二下期末综合测试试题含解析_第3页
海南省定安中学2024届数学高二下期末综合测试试题含解析_第4页
海南省定安中学2024届数学高二下期末综合测试试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

海南省定安中学2024届数学高二下期末综合测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数对于任意的满足(其中是函数的导函数),则下列不等式成立的是A. B.C. D.2.下表提供了某厂节能降耗技术改造后在生产产品过程中记录的产量(吨)与相应的生产能耗(吨)的几组对应数据:根据上表提供的数据,求出关于的线性回归方程为,那么表中的值为()A. B. C. D.3.函数f(x)=13ax3A.0<a<1 B.1<a<2 C.0<a<2 D.a>24.现将甲、乙、丙、丁四个人安排到座位号分别是的四个座位上,他们分别有以下要求,甲:我不坐座位号为和的座位;乙:我不坐座位号为和的座位;丙:我的要求和乙一样;丁:如果乙不坐座位号为的座位,我就不坐座位号为的座位.那么坐在座位号为的座位上的是()A.甲 B.乙 C.丙 D.丁5.从混有4张假钞的10张一百元纸币中任意抽取3张,若其中一张是假币的条件下,另外两张都是真币的概率为()A. B. C. D.6.设命题:,;命题:若,则,则下列命题为真命题的是()A. B. C. D.7.一个口袋内有12个大小形状完全相同的小球,其中有n个红球,若有放回地从口袋中连续取四次(每次只取一个小球),恰好两次取到红球的概率大于,则n的值共有()A.1个 B.2个 C.3个 D.4个8.下列说法正确的是()A.命题“若,则”的否命题为“若,则”B.命题“,”的否定是“,”C.样本的相关系数r,越接近于1,线性相关程度越小D.命题“若,则”的逆否命题为真命题9.的展开式中,的系数是()A.30 B.40 C.-10 D.-2010.已知向量,,且,则等于().A. B. C. D.11.设在定义在上的偶函数,且,若在区间单调递减,则()A.在区间单调递减 B.在区间单调递增C.在区间单调递减 D.在区间单调递增12.函数的极值点所在的区间为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程,若变量增加一个单位时,则平均增加5个单位;③线性回归方程所在直线必过;④曲线上的点与该点的坐标之间具有相关关系;⑤在一个列联表中,由计算得,则其两个变量之间有关系的可能性是.其中错误的是________.14.点P是棱长为1的正方体ABCD﹣A1B1C1D1的底面A1B1C1D1上一点,则的取值范围是__.15.已知复数,其中是虚数单位,则的模是__________.16.展开式中项的系数为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,其中为常数且.(Ⅰ)若是函数的极值点,求的值;(Ⅱ)若函数有3个零点,求的取值范围.18.(12分)如图,在四棱锥中,是边长为2的正方形,平面平面,直线与平面所成的角为,.(1)若,分别为,的中点,求证:直线平面;(2)求二面角的正弦值.19.(12分)已知函数,.(1)当时,求曲线在点处的切线方程;(2)设,若不等式对任意恒成立,求的取值范围.20.(12分)已知向量m=(3sin(1)若m⋅n=1(2)记f(x)=m⋅n在ΔABC中角A,B,C的对边分别为a,b,c,且满足(2a-c)21.(12分)为了适应高考改革,某中学推行“创新课堂”教学.高一平行甲班采用“传统教学”的教学方式授课,高一平行乙班采用“创新课堂”的教学方式授课,为了比较教学效果,期中考试后,分别从两个班中各随机抽取20名学生的成绩进行统计分析,结果如表:(记成绩不低于120分者为“成绩优秀”)分数[80,90)[90,100)[100,110)[110,120)[120,130)[130,140)[140,150]甲班频数1145432乙班频数0112664(1)由以上统计数据填写下面的2×2列联表,并判断是否有95%以上的把握认为“成绩优秀与教学方式有关”?甲班乙班总计成绩优秀成绩不优秀总计(2)现从上述样本“成绩不优秀”的学生中,抽取3人进行考核,记“成绩不优秀”的乙班人数为X,求X的分布列和期望.参考公式:,其中.临界值表P()0.1000.0500.0100.0012.7063.8416.63510.82822.(10分)如图,圆柱的轴截面是,为下底面的圆心,是母线,.(1)证明:平面;(2)求三棱锥的体积.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】

根据题目条件,构造函数,求出的导数,利用“任意的满足”得出的单调性,即可得出答案。【题目详解】由题意知,构造函数,则。当时,当时,恒成立在单调递增,则,化简得,无法判断A选项是否成立;,化简得,故B选项不成立;,化简得,故C选项不成立;,化简得,故D选项成立;综上所述,故选D。【题目点拨】本题主要考查了构造函数法证明不等式,常利用导数研究函数的单调性,再由单调性证明不等式,是函数、导数、不等式综合中的一个难点。2、A【解题分析】

先求出这组数据的样本中心点,样本中心点是用含有t的代数式表示的,把样本中心点代入变形的线性回归方程,得到关于t的一次方程,解方程,得到结果.【题目详解】∵由回归方程知=,解得t=3,故选A.【题目点拨】】本题考查回归分析的初步应用,考查样本中心点的性质,考查方程思想的应用,是一个基础题,解题时注意数字计算不要出错.3、D【解题分析】

函数f(x)=13ax3-x2+5(a>0)在(0,1)【题目详解】f'(x)=ax2-2x,函数f(x)=13ax3-x2+5(a>0)在(0,1)上不单调,即故答案为D.【题目点拨】本题考查了函数的单调性,考查了二次函数的性质,考查了学生分析问题与解决问题的能力,属于中档题.4、C【解题分析】

对甲分别坐座位号为3或4分类推理即可判断。【题目详解】当甲坐座位号为3时,因为乙不坐座位号为1和4的座位所以乙只能坐座位号为2,这时只剩下座位号为1和4又丙的要求和乙一样,矛盾,故甲不能坐座位号3.当甲坐座位号为4时,因为乙不坐座位号为1和4的座位,丙的要求和乙一样:所以丁只能坐座位号1,又如果乙不坐座位号为2的座位,丁就不坐座位号为1的座位.所以乙只能坐座位号2,这时只剩下座位号3给丙。所以坐在座位号为3的座位上的是丙.故选:C【题目点拨】本题主要考查了逻辑推理能力,考查了分类思想,属于中档题。5、A【解题分析】分析:直接利用条件概率公式求解.详解:由条件概率公式得.故答案为A点睛:(1)本题主要考查条件概率,意在考查学生对条件概率的掌握水平.(2)条件概率一般有“在已发生的条件下”这样的关键词,表明这个条件已经发生,发生了才能称为条件概率.但是有时也没有,要靠自己利用条件概率的定义识别.6、D【解题分析】分析:先判断命题的真假,进而根据复合命题真假的真值表,可得结论.详解:因为成立,所以,不存在,,故命题为假命题,为真命题;当时,成立,但不成立,故命题为假命题,为真命题;故命题均为假命题,命题为真命题,故选D.点睛:本题通过判断或命题、且命题以及非命题的真假,综合考查不等式的性质以及特称命题的定义,属于中档题.解答非命题、且命题与或命题真假有关的题型时,应注意:(1)原命题与其非命题真假相反;(2)或命题“一真则真”;(3)且命题“一假则假”.7、C【解题分析】

设每次取到红球的概率为p,结合独立事件的概率的计算公式,求得,再由,即可判定,得到答案.【题目详解】由题意,设每次取到红球的概率为p,可得,即,解得,因为,所以,所以或6或7.故选:C.【题目点拨】本题主要考查了独立事件的概率的计算公式及其应用,其中解答中正确理解题意,合理利用独立事件的概率的计算公式,求得相应的概率的取值范围是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.8、D【解题分析】

利用四种命题之间的变换可判断A;根据全称命题的否定变法可判断B;利用相关系数与相关性的关系可判断C;利用原命题与逆否命题真假关系可判断D.【题目详解】对于A,命题“若,则”的否命题为“若,则”,故A错误;对于B,命题“,”的否定是“,”,故B错误;对于C,样本的相关系数r,越接近于1,线性相关程度越大,故C错误;对于D,命题“若,则”为真命题,故逆否命题也为真命题,故D正确;故选:D【题目点拨】本题考查了判断命题的真假、全称命题的否定、四种命题的转化以及原命题与逆否命题真假关系、相关系数与相关性的关系,属于基础题.9、B【解题分析】

通过对括号展开,找到含有的项即可得到的系数.【题目详解】的展开式中含有的项为:,故选B.【题目点拨】本题主要考查二项式定理系数的计算,难度不大.10、B【解题分析】

由向量垂直可得,求得x,及向量的坐标表示,再利用向量加法的坐标运算和向量模的坐标运算可求得模.【题目详解】由,可得,代入坐标运算可得x-4=0,解得x=4,所以,得=5,选B.【题目点拨】求向量的模的方法:一是利用坐标,二是利用性质,结合向量数量积求解.11、D【解题分析】

根据题设条件得到函数是以2为周期的周期函数,同时关于对称的偶函数,根据对称性和周期性,即可求解.【题目详解】由函数满足,所以是周期为2的周期函数,由函数在区间单调递减,可得单调递减,所以B不正确;由函数在定义在上的偶函数,在区间单调递减,可得在区间单调递增,所以A不正确;又由函数在定义在上的偶函数,则,即,所以函数的图象关于对称,可得在区间单调递增,在在区间单调递增,所以C不正确,D正确,故选D.【题目点拨】本题主要考查了函数的单调性与对称性的应用,以及函数的周期性的判定,着重考查了推理与运算能力,属于基础题.12、A【解题分析】

求出导函数,然后运用函数零点存在性定理进行验证可得所求区间.【题目详解】∵,∴,且函数单调递增.又,∴函数在区间内存在唯一的零点,即函数的极值点在区间内.故选A.【题目点拨】本题考查函数零点存在性定理的应用,解答本题时要弄清函数的极值点即为导函数的零点,同时还应注意只有在导函数零点左右两侧的函数值变号时,该零点才为极值点,否则导函数的零点就不是极值点.二、填空题:本题共4小题,每小题5分,共20分。13、②④⑤【解题分析】分析:根据方程性质、回归方程性质及其含义、卡方含义确定命题真假.详解:由方差的性质知①正确;由线性回归方程的特点知③正确;回归方程若变量增加一个单位时,则平均减少5个单位;曲线上的点与该点的坐标之间不一定具有相关关系;在一个列联表中,由计算得,只能确定两个变量之间有相关关系的可能性,所以②④⑤均错误.点睛:本题考查方程性质、回归方程性质及其含义、卡方含义,考查对基本概念理解与简单应用能力.14、[﹣,0]【解题分析】

建立空间直角坐标系,设出点P的坐标为(x,y,z),则由题意可得0≤x≤1,0≤y≤1,z=1,计算•x2﹣x,利用二次函数的性质求得它的值域即可.【题目详解】解:以点D为原点,以DA所在的直线为x轴,以DC所在的直线为y轴,以DD1所在的直线为z轴,建立空间直角坐标系,如图所示;则点A(1,0,0),C1(0,1,1),设点P的坐标为(x,y,z),由题意可得0≤x≤1,0≤y≤1,z=1;∴(1﹣x,﹣y,﹣1),(﹣x,1﹣y,0),∴•x(1﹣x)﹣y(1﹣y)+0=x2﹣x+y2﹣y,由二次函数的性质可得,当x=y时,•取得最小值为;当x=0或1,且y=0或1时,•取得最大值为0,则•的取值范围是[,0].故答案为:[,0].【题目点拨】本题主要考查了向量在几何中的应用与向量的数量积运算问题,是综合性题目.15、【解题分析】分析:分子分母同时乘以,化简整理,得出,再得模。详解:,所以。点睛:复数的除法运算公式。16、1【解题分析】分析:根据二项式定理的通项公式,再分情况考虑即可求解.详解:展开式中x项的系数:二项式(1+x)5由通项公式当(1﹣x)提供常数项时:r=1,此时x项的系数是=2018,当(1﹣x)提供一个x时:r=0,此时x项的系数是﹣1×=﹣1合并可得(1﹣x)(1+x)5展开式中x项的系数为1.故答案为:1.点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第r+1项,再由特定项的特点求出r值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第r+1项,由特定项得出r值,最后求出其参数.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)【解题分析】

(I)由题意把代入导函数,导函数得0,即可求的值;(II)由题意等价转化为函数在区间上有三个零点问题,转化为求函数在定义域下求极值,列关于a的不等式求解.【题目详解】(Ⅰ)依题意得,所以,是函数的极值点,得f′(2)=0,解得或(舍去),故,(Ⅱ)函数有3个零点,即方程有三个不同实根,因为所以有三个不等实根,令,,,令,解得,在单调递增,单调递减,单调递增,所以为的极值点,根据函数有3个零点,需满足,解得,的取值范围为.【题目点拨】本题考查函数零点个数求参数的取值范围,通常利用转化思想将函数进行转化成等价函数或者方程根的问题,利用导数研究函数的性质,根据条件列出不等式求解,考查数学思想方法的灵活应用,属于较难题.18、(1)证明见解析;(2)【解题分析】

(1)由平面平面得到平面,从而,根据,得到平面,得到,结合,得到平面;(2)为原点,建立空间坐标系,得到平面和平面的法向量,利用向量的夹角公式,得到法向量之间的夹角余弦,从而得到二面角的正弦值.【题目详解】(1)证明:∵平面平面,平面平面,,平面,∴平面,则为直线与平面所成的角,为,∴,而平面,∴又,为的中点,∴,平面,则平面,而平面∴,又,分别为,的中点,则,正方形中,,∴,又平面,,∴直线平面;(2)解:以为坐标原点,分别以,所在直线为,轴,过作的平行线为轴建立如图所示空间直角坐标系,则,,,,,,,设平面的法向量为,则,即,取,得;设平面的法向量为,则,即,取,得.∴.∴二面角的正弦值为.【题目点拨】本题考查面面垂直的性质,线面垂直的性质和判定,利用空间向量求二面角的正弦值,属于中档题.19、(1);(2).【解题分析】

(1)把a=2代入原函数解析式中,求出函数在x=1时的导数值,直接利用直线方程的点斜式写直线方程;(2)设,即h(x)>0恒成立,对函数求导,分,,三种情况得到函数单调性,进而得到结果.【题目详解】(1)当时,,,切点为,,,曲线在点处的切线方程为,即.(2)设,,不等式对任意恒成立,即函数在上的最小值大于零.①当,即时,在上单调递减,的最小值为,由可得,,.②当,即时,在上单调递增,最小值为,由可得,即.③当,即时,可得最小值为,,,故.即,综上可得,的取值范围是.【题目点拨】导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立;(3)若恒成立,可转化为(需在同一处取得最值).20、(1)-(2)(1,【解题分析】试题分析:(1)∵m·n=1,即3sinx4cosx4+cos2即32sinx2+12cosx∴sin(x2+π6)=∴cos(2π3-x)=cos(x-π3)=-cos(x+π3)=-[1-2sin2(=2·(12)2-1=-1(2)∵(2a-c)cosB=bcosC,由正弦定理得(2sinA-sinC)cosB=sinBcosC.∴2sinAcosB-cosBsinC=sinBcosC,∴2sinAcosB=sin(B+C),∵A+B+C=π,∴sin(B+C)=sinA,且sinA≠0,∴cosB=12,B=π3,∴0<A<∴π6<A2+π6<π212又

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论