版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省邢台市桥东区邢台二中2024届高二数学第二学期期末综合测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.甲、乙、丙、丁四位同学各自对、两变量的线性相关性做试验,并用回归分析方法分别求得相关系数与残差平方和如表:甲乙丙丁0.820.780.690.85106115124103则哪位同学的试验结果体现、两变量有更强的线性相关性()A.甲 B.乙 C.丙 D.丁2.如图所示,程序框图输出的某一实数中,若,则菱形框中应填入()A. B. C. D.3.的展开式中的系数为()A.100 B.80 C.60 D.404.已知双曲线的两个焦点分别为,过右焦点作实轴的垂线交双曲线于,两点,若是直角三角形,则双曲线的离心率为()A. B. C. D.5.在(x+1x2A.-32 B.-8 C.8 D.486.甲、乙两人进行三打二胜制乒乓球赛,已知每局甲取胜的概率为0.6,乙取胜的概率为0.4,那么最终甲胜乙的概率为A.0.36 B.0.216 C.0.432 D.0.6487.下列叙述正确的是()A.若命题“p∧q”为假命题,则命题“p∨q”是真命题B.命题“若x2=1,则x=1”的否命题为“若xC.命题“∀x∈R,2x>0”的否定是“∀xD.“α>45°”是“8.设曲线在点处的切线与直线平行,则()A.B.C.D.9.定义“规范01数列”如下:共有项,其中项为0,项为1,且对任意,,,…,中0的个数不少于1的个数.若,则不同的“规范01数列”共有()A.14个 B.13个 C.15个 D.12个10.已知函数的部分图象如图所示,则函数的表达式是()A. B.C. D.11.函数有极值的充要条件是()A. B. C. D.12.已知某几何体的三视图如图所示,则该几何体的表面积为()A.16 B.(10+)π C.4+(5+)π D.6+(5+)π二、填空题:本题共4小题,每小题5分,共20分。13.已知函数在上单调递增,则实数的取值范围______.14.函数的定义域是_______.15.如图,两条距离为4的直线都与轴平行,它们与抛物线和圆分别交于,和,,且抛物线的准线与圆相切,则的最大值为______.16.已知X的分布列为X-101Pa设,则E(Y)的值为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)知函数.(1)当时,求的解集;(2)已知,,若对于,都有成立,求的取值范围.18.(12分)选修4—4:坐标系与参数方程在直角坐标系中,直线的参数方程为(为参数).以原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.点的直角坐标为,直线与曲线交于两点.(Ⅰ)写出点的极坐标和曲线的普通方程;(Ⅱ)当时,求点到两点的距离之积.19.(12分)已知函数(,)的最大值为正实数,集合,集合.(1)求和;(2)定义与的差集:,设、、设均为整数,且,为取自的概率,为取自的概率,写出与的二组值,使,.20.(12分)把编号为1、2、3、4、5的小球,放入编号为1、2、3、4、5的盒子中.(1)恰有两球与盒子号码相同;(2)球、盒号码都不相同,问各有多少种不同的方法21.(12分)不等式的解集是,关于x的不等式的解集是。(1)若,求;(2)若,求实数的取值范围。22.(10分)在中,角所对的边分别为且.(1)求角的值;(2)若为锐角三角形,且,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】试题分析:由题表格;相关系数越大,则相关性越强.而残差越大,则相关性越小.可得甲、乙、丙、丁四位同学,中丁的线性相关性最强.考点:线性相关关系的判断.2、B【解题分析】分析:由已知中的程序语句可知,该程序功能是利用循环结构计算并输出实数对,模拟程序的运行过程,分析循环中各变量的变化情况,可得答案.详解:由题意,当时,第1次循环,不满足条件,;第2次循环,不满足条件,;第3次循环,不满足条件,;第4次循环,不满足条件,;第5次循环,不满足条件,,此时输出结果,所以判断框填写的条件应为,故选B.点睛:本题主要考查了循环结构的程序框图的判断条件的添加问题,其中极大中应模拟程序框图的运行过程,把握程序框图的运算功能是解答的关键,着重考查了推理与运算能力.3、D【解题分析】
由二项式项的公式,直接得出x2的系数等于多少的表达式,由组合数公式计算出结果选出正确选项.【题目详解】因为的展开式中含的项为,故的系数为40.故选:D【题目点拨】本题考查二项式系数的性质,根据项的公式正确写出x2的系数是解题的关键,对于基本公式一定要记忆熟练.4、B【解题分析】分析:由题意结合双曲线的结合性质整理计算即可求得最终结果.详解:由双曲线的对称性可知:,则为等腰直角三角形,故,由双曲线的通径公式可得:,据此可知:,即,整理可得:,结合解方程可得双曲线的离心率为:.本题选择B选项.点睛:双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式;②只需要根据一个条件得到关于a,b,c的齐次式,结合b2=c2-a2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围).5、C【解题分析】
利用x-25的展开式通项,与x和1x2分别做乘法,分别求得x的系数,作和求得整体的【题目详解】x-25展开式的通项为:与x相乘可得:x⋅当r=5时得:C与1x2当r=2时得:C∴x的系数为:-32+40=8本题正确选项:C【题目点拨】本题考查二项式定理求解xn的系数的问题,关键在于能够运用多项式相乘的运算法则,分别求出同次项的系数,合并同类项得到结果6、D【解题分析】分析:由题意,要使得甲胜乙,则包含着甲胜前两局或甲胜第一、三局或甲胜二、三局三种情况,根据互斥时间的概率和相互独立了的计算的公式,即可求解答案.详解:由题意,每局中甲取胜的概率为,乙取胜的概率为,则使得甲胜乙,则包含着甲胜前两局或甲胜第一、三局或甲胜二、三局三种情况,根据互斥时间的概率和相互独立了的计算的公式得:,故选D.点睛:本题主要考查了相互独立事件同时发生的概率和互斥事件的概率的计算,其中根据题意得出甲取胜的三种情况是解答本题的关键,着重考查了分析问题和解答问题的能力.7、B【解题分析】
结合命题知识对四个选项逐个分析,即可选出正确答案.【题目详解】对于选项A,“p∧q”为假命题,则p,q两个命题至少一个为假命题,若p,q两个命题都是假命题,则命题“p∨q”是假命题,故选项A错误;对于选项B,“若x2=1,则x=1”的否命题为“若x2对于选项C,命题“∀x∈R,2x>0”的否定是“∃x0∈R,对于选项D,若α=135°,则tanα<0,故“【题目点拨】本题考查了命题的真假的判断,考查了学生对基础知识的掌握情况.8、D【解题分析】试题分析:由的导数为,则在点处的切线斜率为,由切线与直线平行,所以,故选D.考点:利用导数研究曲线在某点处的切线方程.9、A【解题分析】分析:由新定义可得,“规范01数列”有偶数项2m项,且所含0与1的个数相等,首项为0,末项为1,当m=4时,数列中有四个0和四个1,然后一一列举得答案.详解:由题意可知,“规范01数列”有偶数项2m项,且所含0与1的个数相等,首项为0,末项为1,若m=4,说明数列有8项,满足条件的数列有:0,0,0,0,1,1,1,1;0,0,0,1,0,1,1,1;0,0,0,1,1,0,1,1;0,0,0,1,1,1,0,1;0,0,1,0,0,1,1,1;0,0,1,0,1,0,1,1;0,0,1,0,1,1,0,1;0,0,1,1,0,1,0,1;0,0,1,1,0,0,1,1;0,1,0,0,0,1,1,1;0,1,0,0,1,0,1,1;0,1,0,0,1,1,0,1;0,1,0,1,0,0,1,1;0,1,0,1,0,1,0,1.共14个.故答案为:A.点睛:本题是新定义题,考查数列的应用,关键是对题意的理解,枚举时做到不重不漏.10、D【解题分析】
根据函数的最值求得,根据函数的周期求得,根据函数图像上一点的坐标求得,由此求得函数的解析式.【题目详解】由题图可知,且即,所以,将点的坐标代入函数,得,即,因为,所以,所以函数的表达式为.故选D.【题目点拨】本小题主要考查根据三角函数图像求三角函数的解析式,属于基础题.11、C【解题分析】因为,所以,即,应选答案C.12、C【解题分析】分析:由该几何体的三视图判断出组合体各部分的几何特征,以及各部分的几何体相关几何量的数据,由面积公式求出该几何体的表面积.详解:该几何体是两个相同的半圆锥与一个半圆柱的组合体,其表面积为:S=π+4π+4+π=4+(5+)π.故选:C.点睛:本题考查了由三视图求几何体的表面积,解题的关键是根据三视图判断几何体的结构特征及相关几何量的数据.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
函数在上单调递增,等价于在恒成立,再利用最值法运算即可.【题目详解】解:因为,所以,因为函数在上单调递增,所以在恒成立,即在恒成立,又当时,取最小值,即,故答案为:.【题目点拨】本题考查了利用函数的单调性求参数的范围,重点考查了导数的应用,属基础题.14、【解题分析】
被开方式大于或等于0,得求解【题目详解】由题知:,,定义域为.故答案为:【题目点拨】本题考查函数的定义域.常见基本初等函数定义域的基本要求(1)分式函数中分母不等于零.(2)偶次根式函数的被开方式大于或等于.(3)一次函数、二次函数的定义域均为.(4)的定义域是.(5)且,的定义域均为.(6)且的定义域为.15、【解题分析】
先设直线的方程为,再利用直线与圆锥曲线的位置关系将用表示,再利用导数求函数的最值即可得解.【题目详解】解:由抛物线的准线与圆相切得或7,又,∴.设直线的方程为,则直线的方程为,则.设,,令,得;令,得.即函数在为增函数,在为减函数,故,从而的最大值为,故答案为:.【题目点拨】本题考查了利用导数求函数的最值,重点考查了运算能力,属中档题.16、【解题分析】
先利用频率之和为求出的值,利用分布列求出,然后利用数学期望的性质得出可得出答案.【题目详解】由随机分布列的性质可得,得,,因此,.故答案为.【题目点拨】本题考查随机分布列的性质、以及数学期望的计算与性质,灵活利用这些性质和相关公式是解题的关键,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)或.(2).【解题分析】分析:(1)当时,对分三种情况讨论,分别去掉绝对值符号,然后求解不等式组,再求并集即可得结果;(2)当,.所以,即又的最大值必为之一.所以,即,进而可得结果.详解:(1)当时,,等价于.因为.所以或或.解得或.所以解集为.(2)当,且时,.所以,即.又的最大值必为之一.所以,即.解得.所以的取值范围为.点睛:绝对值不等式的常见解法:①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.18、(1)见解析;(2).【解题分析】分析:⑴由极坐标方程求出点的极坐标,运用求得曲线的普通方程⑵将代入,求出直线的参数方程,然后计算出结果详解:(Ⅰ)由得,又得,∴点的极坐标为.由得,所以有,由得,所以曲线的普通方程为:.(Ⅱ)因为,点在上,∴直线的参数方程为:,将其代入并整理得,设所对应的参数分别为,且有,所以.点睛:本题考查了极坐标和普通方程之间的转化,运用代入化简即可,在求距离时可以运用参数方程来解答,计算量减少19、(1),;(2),或,.【解题分析】
(1)根据求解集合,然后根据二次函数的最大值大于0确定,求集合;(2)求与的两组值,根据、、设均为整数,且,可以分中有3个元素,中有2个元素,中有1个元素,以及中有6个元素,中有4个元素,中有2个元素两种情况讨论得到与的两组值.【题目详解】(1)不等式的解集是,即函数(,)的最大值为正实数,,,,不等式的解集是,.(2)要使,,可以分两种情况,①可以使中有3个元素,中有2个元素,中有1个元素,根据(1)的结果,可知,此时集合有3个整数元素,中有1个元素即;②可以使中有6个元素,中有4个元素,中有2个元素,则,此时集合有6个整数元素,,中有2个元素即,综上,与的两组值分别是,或,.【题目点拨】本题考查了函数的最值和解不等式,以及古典概型及其概率计算公式,属于中档题型,本题的第二问只写与的两组值,所以只写出比较简单的两个集合即可.20、(1)20;(2)44.【解题分析】
(1)由题意结合排列组合公式和乘法原理即可求得恰有两球与盒子号
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 夫妻保证书全文样本
- 农业用地流转承包协议书
- 成人教育宣传推广协议
- 冷热水管材购销合同范本
- 光纤采购招标合同履行问题处理建议
- 员工外出安全保护方案
- 月嫂服务合同贴心解读
- 项目服务合同范本分享
- 供应商合同样本
- 工程安装委托书格式样本
- 2023级高数(上)试卷及答案
- 数控车床上下料机械手设计说明书
- 高中数学公开课优质课1.3.0探究与发现“杨辉三角”中的一些秘密【市一等奖】优质课
- 100KW分布式光伏电站设计方案
- 2010版GMP附录:计算机化系统整体及条款解读(完整精华版)
- 网吧企业章程范本
- 商业综合体、购物中心、百货商场商业运营项目收益测算模板
- 丙烯储罐毕业设计
- 水工建筑物水泥灌浆施工技术规范
- 钢质焊接气瓶设计和制造培训教材(共36页).ppt
- 小学道德与法治生活化探究教研课题论文开题结题中期研究报告(反思经验交流)
评论
0/150
提交评论