版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省扬州市安宜高中、汜水高中联考数学高二第二学期期末质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.4名同学报名参加两个课外活动小组,每名同学限报其中的一个小组,则不同的报名方法共有()A.4种 B.16种 C.64种 D.256种2.设实数a=log23,b=A.a>b>c B.a>c>b C.b>a>c D.b>c>a3.曲线对称的曲线的极坐标方程是()A. B. C. D.4.在极坐标系中,曲线,曲线,若曲线与交于两点,则线段的长度为()A.2 B. C. D.15.下列函数中与函数相同的是()A. B. C. D.6.如图所示的五个区域中,中心区域是一幅图画,现要求在其余四个区域中涂色,有四种颜色可供选择.要求每个区域只涂一种颜色且相邻区域所涂颜色不同,则不同的涂色方法种数为()A.56 B.72 C.64 D.847.若,则的最小值为()A.2 B.4 C.6 D.88.曲线在处的切线的斜率为()A. B. C. D.9.生活中有这样一个实际问题:如果一杯糖水不够甜,可以选择加糖的方式,使得糖水变得更甜.若,则下列数学模型中最能刻画“糖水变得更甜”的是()A. B.C. D.10.“夫叠棋成立积,缘幂势既同,则积不容异”是以我国哪位数学家命名的数学原理()A.杨辉 B.刘微 C.祖暅 D.李淳风11.二项式展开式中的常数项为()A. B.C. D.12.某程序框图如图所示,该程序运行后输出的的值是()A.4 B.5 C.6 D.7二、填空题:本题共4小题,每小题5分,共20分。13.抛物线的焦点到准线的距离为________.14.已知,且,则____.15.在复平面上,复数、分别对应点、,为坐标原点,则______.16.已知函数,其中e是自然数对数的底数,若,则实数a的取值范围是_________。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB="A"A1,∠BAA1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.18.(12分)2017年5月14日,第一届“一带一路”国际高峰论坛在北京举行,为了解不同年龄的人对“一带一路”关注程度,某机构随机抽取了年龄在15-75岁之间的100人进行调查,经统计“青少年”与“中老年”的人数之比为.关注不关注合计青少年15中老年合计5050100(1)根据已知条件完成上面的列联表,并判断能否有99%的把握认为关注“一带一路”是否和年龄段有关?(2)现从抽取的青少年中采用分层抽样的办法选取9人进行问卷调查.在这9人中再选取3人进行面对面询问,记选取的3人中关注“一带一路”的人数为X,求X的分布列及数学期望.附:参考公式,其中.临界值表:0.050.0100.0013.8416.63510.82819.(12分)国家文明城市评审委员会对甲、乙两个城市是否能入围“国家文明城市”进行走访调查,派出10人的调查组,先后到甲、乙两个城市的街道、社区进行问卷调查,然后打分(满分100分),他们给出甲、乙两个城市分数的茎叶图如图所示:(1)请你用统计学的知识分析哪个城市更应该入围“国家文明城市”,并说明理由;(2)从甲、乙两个城市的打分中各抽取2个,在已知有大于80分的条件下,求抽到乙城市的分数都小于80分的概率.(参考数据:,)20.(12分)如图,在四棱锥P-ABCD中,四边形ABCD是直角梯形,AB⊥AD,AB//CD,PC⊥底面ABCD,AB=2AD=2CD=4,PC=2a,E是PB的中点.(1)求证:平面EAC⊥平面PBC;(2)若a=2,求二面角P-AC-E的余弦值.21.(12分)已知函数.(1)求函数的单调区间;(2)当时,求函数的最大值.22.(10分)在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)为曲线上的动点,点在线段上,且满足,求点的轨迹的直角坐标方程;(2)设点的极坐标为,点在曲线上,求面积的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】根据题意,每个同学可以在两个课外活动小组中任选1个,即有2种选法,则4名同学一共有种选法;故选B.2、A【解题分析】分析:利用指数函数、对数函数的单调性及中间量比较大小.详解:∵a=log23>log22=1,0<b=1312<(1c=log132∴a>b>c.故选A.点睛:利用指数函数对数函数及幂函数的性质比较实数或式子的大小,一方面要比较两个实数或式子形式的异同,底数相同,考虑指数函数增减性,指数相同考虑幂函数的增减性,当都不相同时,考虑分析数或式子的大致范围,来进行比较大小,另一方面注意特殊值0,1的应用,有时候要借助其“桥梁”作用,来比较大小.3、A【解题分析】
先把两曲线极坐标方程化为普通方程,求得对称曲线,再转化为极坐标方程。【题目详解】化为标准方程可知曲线为,曲线为,所以对称直线为,化为极坐标方程为,选A.【题目点拨】由直角坐标与极坐标互换公式,利用这个公式可以实现直角坐标与极坐标的相互转化。4、B【解题分析】
分别将曲线,的极坐标方程化为普通方程,根据直线与圆相交,利用点到直线的距离公式结合垂径定理,可得结果【题目详解】根据题意,曲线曲线,则直线与圆相交,圆的半径为,圆心到直线的距离为设长为,则有,即解得(舍负)故线段的长度为故选【题目点拨】本题主要考查的是极坐标与直角坐标方程的互化,圆的方程以及直线与圆的位置关系,是一道基础题5、B【解题分析】
判断各个选项中的函数和函数是否具有相同的定义域、值域、对应关系,从而得出结论.【题目详解】由于函数yt,和函数具有相同的定义域、值域、对应关系,故是同一个函数,故B满足条件.由于函数y和函数的定义域不同,故不是同一个函数,故排除D.由于函数,y|x|和函数的值域不同,故不是同一个函数,故排除A,C.故选:A.【题目点拨】本题主要考查函数的三要素,只有两个函数的定义域、对应关系、值域都相同时,这两个函数才是同一个函数,属于基础题.6、D【解题分析】分析:每个区域只涂一种颜色,相邻区域颜色不相同,然后分类研究,A、C不同色和A、C同色两大类.详解:分两种情况:(1)A、C不同色(注意:B、D可同色、也可不同色,D只要不与A、C同色,所以D可以从剩余的2中颜色中任意取一色):有4×3×2×2=48种;(2)A、C同色(注意:B、D可同色、也可不同色,D只要不与A、C同色,所以D可以从剩余的3中颜色中任意取一色):有4×3×1×3=36种.共有84种,故答案为:D.点睛:(1)本题主要考查排列组合的综合问题,意在考查学生对这些知识的掌握水平和分析推理能力.(2)排列组合常用方法有一般问题直接法、相邻问题捆绑法、不相邻问题插空法、特殊对象优先法、等概率问题缩倍法、至少问题间接法、复杂问题分类法、小数问题列举法.7、C【解题分析】
利用均值不等式求解即可.【题目详解】∵(当且仅当n=3时等号成立)故选:C.【题目点拨】本题主要考查了均值不等式求最值.注意把握好一定,二正,三相等的原则.8、B【解题分析】
因为,所以.故选B.9、B【解题分析】
由题意可得糖水甜可用浓度体现,设糖的量为,糖水的量设为,添加糖的量为,对照选项,即可得到结论.【题目详解】由题意,若,设糖的量为,糖水的量设为,添加糖的量为,选项A,C不能说明糖水变得更甜,糖水甜可用浓度体现,而,能体现糖水变甜;选项D等价于,不成立,故选:B.【题目点拨】本题主要考查了不等式在实际生活中的运用,考查不等式的等价变形,着重考查了推理与运算能力,属于基础题.10、C【解题分析】
由题意可得求不规则几何体的体积的求法,即运用祖暅原理.【题目详解】“夫叠棋成立积,缘幂势既同,则积不容异”的意思是“夹在两平行平面之间的两个几何体被平行于这两个平行平面的任意平面所截,如果两个截面面积仍然相等,那么这两个几何体的体积相等”,这就是以我国数学家祖暅命名的数学原理,故选:C.【题目点拨】本题考查祖暅原理的理解,考查空间几何体体积的求法,考查对概念的理解,属于基础题.11、B【解题分析】
求出二项展开式的通项,使得的指数为,即可得出常数项.【题目详解】通项为常数项为故选:B【题目点拨】本题主要考查了利用二项式定理求常数项,属于基础题.12、A【解题分析】
根据框图,模拟计算即可得出结果.【题目详解】程序执行第一次,,,第二次,,第三次,,第四次,,跳出循环,输出,故选A.【题目点拨】本题主要考查了程序框图,循环结构,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】,所以,所以抛物线的焦点到准线的距离为.14、【解题分析】
利用复数相等的条件和复数的模运算可以求得.【题目详解】由复数相等得:解得:故答案为【题目点拨】本题考查复数相等和复数的模,属于基础题.15、【解题分析】
由复数、分别对应点,,可得,即可计算.【题目详解】复数、分别对应点,,可得:,故答案为:.【题目点拨】本题考查复平面和数量积,主要考查复数的几何意义.掌握复数与复平面内的点一一对应是解本题的关键,属于基础题.16、【解题分析】因为,所以函数是奇函数,因为,所以数在上单调递增,又,即,所以,即,解得,故实数的取值范围为.点睛:解函数不等式时,首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在函数的定义域内.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2).【解题分析】
试题分析:(Ⅰ)取AB的中点O,连接OC,OA1,A1B,由已知可证OA1⊥AB,AB⊥平面OA1C,进而可得AB⊥A1C;(Ⅱ)易证OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立坐标系,可得,,的坐标,设=(x,y,z)为平面BB1C1C的法向量,则,可解得=(,1,﹣1),可求|cos<,>|,即为所求正弦值.解:(Ⅰ)取AB的中点O,连接OC,OA1,A1B,因为CA=CB,所以OC⊥AB,由于AB=AA1,∠BAA1=60°,所以△AA1B为等边三角形,所以OA1⊥AB,又因为OC∩OA1=O,所以AB⊥平面OA1C,又A1C⊂平面OA1C,故AB⊥A1C;(Ⅱ)由(Ⅰ)知OC⊥AB,OA1⊥AB,又平面ABC⊥平面AA1B1B,交线为AB,所以OC⊥平面AA1B1B,故OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立如图所示的坐标系,可得A(1,0,0),A1(0,,0),C(0,0,),B(﹣1,0,0),则=(1,0,),=(﹣1,,0),=(0,﹣,),设=(x,y,z)为平面BB1C1C的法向量,则,即,可取y=1,可得=(,1,﹣1),故cos<,>==,又因为直线与法向量的余弦值的绝对值等于直线与平面的正弦值,故直线A1C与平面BB1C1C所成角的正弦值为:.考点:用空间向量求直线与平面的夹角;直线与平面垂直的性质;平面与平面垂直的判定;直线与平面所成的角.18、(1)有的把握认为关注“一带一路”和年龄段有关(2)【解题分析】试题分析:(1)依题意完成列联表,计算,对照临界值得出结论;(2)根据分层抽样法,得出随机变量的可能取值,计算对应的概率值,写出的分布列,计算出数学期望值.试题解析:(1)依题意可知,抽取的“青少年”共有人,“中老年”共有人.完成的2×2列联表如:关注不关注合计青少年153045中老年352055合计5050100则因为,,所以有的把握认为关注“一带一路”和年龄段有关(2)根据题意知,选出关注的人数为3,不关注的人数为6,在这9人中再选取3人进行面对面询问,的取值可以为0,1,2,3,则,,,.0123所以的分布列为数学期望19、(1)乙城市,理由见解析;(2)【解题分析】
(1)求出甲已两个城市的打分平均数及方差,根据大小判断即可;(2)设事件“甲、乙两个城市的打分中,各抽取2个,有大于80分的分数”,事件“甲、乙两个城市的打分中,各抽取2个,乙城市的分数都小于80分”,根据条件概率公式求解即可.【题目详解】(1)甲城市的打分平均数为:,乙城市的打分平均数为:,则甲城市的打分的方差为:乙城市的打分的方差为:甲乙两城市的打分平均数的平均数相同,但是乙城市打分波动更小,故乙城市更应该入围“国家文明城市”;(2)由茎叶图可得,分数在80分以上的甲城市有4个,乙城市有5个.设事件“甲、乙两个城市的打分中,各抽取2个,有大于80分的分数”,事件“甲、乙两个城市的打分中,各抽取2个,乙城市的分数都小于80分”,则,因为,,所以.【题目点拨】本题考核方差,平均数的计算,考查条件概率的求解,是中档题.20、(1)证明见解析.(2)63【解题分析】试题分析:(1)在直角梯形ABCD中利用勾股定理证明AC⊥BC,而PC⊥AC,所以AC⊥平面PBC,所以平面EAC⊥平面PBC;(2)取AB中点F,以C为原点,CF,CD,CP分别为x,y,z轴,建立空间直角坐标系,利用平面PAC,EAC的法向量,求解得二面角的余弦值为63试题解析:(1)在直角梯形ABCD中,AB⊥AD,AB∥CD,AB=2AD=2CD=4,∴BC=22+(4-2)2=22EAC,∴平面EAC⊥平面PBC.(2)取AB中点F,如图所示,以C为原点,CF,CD,CP分别为x,y,z轴,建立空间直角坐标系,则C(0,0,0),A(2,2,0),B(2,-2,0),P(0,0,4),E(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025招标师考试合同管理考点之概念和内容
- ssl握手协议得流程
- 2022年湖州织里合同纠纷案查询
- 二零二五年度智慧农业联营合作协议2篇
- 2025家庭房屋室内装修合同范本
- 二零二五年度出境领队境外紧急援助合同3篇
- 2024年装饰装修工程联合施工合同
- 2024版商业宣传册设计合作协议
- 2025关于商务合同范本
- 2025农村土地转让合同书范本
- 0的认识和加、减法(说课稿)-2024-2025学年一年级上册数学人教版(2024)001
- 2025年广西旅发南国体育投资集团限公司招聘高频重点提升(共500题)附带答案详解
- 2024-2025学年铜官山区数学三年级第一学期期末调研试题含解析
- ISO 56001-2024《创新管理体系-要求》专业解读与应用实践指导材料之18:“7支持-7.1资源”(雷泽佳编制-2025B0)
- ISO 56001-2024《创新管理体系-要求》专业解读与应用实践指导材料之17:“6策划-6.6合作”(雷泽佳编制-2025B0)
- ISO 56001-2024《创新管理体系-要求》专业解读与应用实践指导材料之16:“6策划-6.5组织结构”(雷泽佳编制-2025B0)
- 全国英语教师赛课一等奖七年级上册(人教2024年新编)《Unit 7 Happy Birthday》教学设计
- 碳排放监测技术
- 2024年世界职业院校技能大赛高职组“关务实务组”赛项参考试题库(含答案)
- 江西省2023-2024学年高二上学期期末教学检测数学试题 附答案
- 超市项目投标书模板
评论
0/150
提交评论