2024届湖北省恩施州巴东一中数学高二下期末考试试题含解析_第1页
2024届湖北省恩施州巴东一中数学高二下期末考试试题含解析_第2页
2024届湖北省恩施州巴东一中数学高二下期末考试试题含解析_第3页
2024届湖北省恩施州巴东一中数学高二下期末考试试题含解析_第4页
2024届湖北省恩施州巴东一中数学高二下期末考试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖北省恩施州巴东一中数学高二下期末考试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.曲线在点处的切线方程是

A. B.C. D.2.已知双曲线的焦点坐标为,,点是双曲线右支上的一点,,的面积为,则该双曲线的离心率为()A. B. C. D.3.设随机变量服从分布,且,,则()A., B.,C., D.,4.已知函数,,则其导函数的图象大致是()A.B.C.D.5.某人有3个电子邮箱,他要发5封不同的电子邮件,则不同的发送方法有()A.8种 B.15种 C.种 D.种6.连掷两次骰子得到的点数分别为和,记向量与向量的夹角为,则的概率是()A. B. C. D.7.设命题:,,则为()A., B.,C., D.,8.从名学生中选取名组成参观团,若采用下面的方法选取:先用简单随机抽样从人中剔除人,剩下的人再按系统抽样的方法进行.则每人入选的概率()A.不全相等 B.均不相等 C.都相等,且为 D.都相等,且为9.已知点P是双曲线上一点,若,则△的面积为()A. B. C.5 D.1010.将3本相同的小说,2本相同的诗集全部分给4名同学,每名同学至少1本,则不同的分法有()A.24种 B.28种 C.32种 D.36种11.下列判断错误的是A.若随机变量服从正态分布,则B.“R,”的否定是“R,”C.若随机变量服从二项分布:,则D.“<”是“a<b”的必要不充分条件12.已知函数,则函数的定义域为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.“”是“函数是上的奇函数”的__________条件.(填“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”中一个)14.抛物线C:上一点到其焦点的距离为3,则抛物线C的方程为_______.15.定义在R上的函数满足,且对任意的不相等的实数,有成立,若关于x的不等式在上恒成立,则实数m的取值范围________.16.在平面直角坐标系xOy中,若圆C1:x2+(y-1)2=r2(r>0)上存在点P,且点P关于直线x-y=0的对称点Q在圆C2:(x-2)2+(y-1)2=1上,则r的取值范围是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知平面直角坐标系xOy,直线l过点P0,3,且倾斜角为α,以O为极点,x轴的非负半轴为极轴建立极坐标系,圆C的极坐标方程为(1)求直线l的参数方程和圆C的标准方程;(2)设直线l与圆C交于M、N两点,若PM-PN=2,求直线18.(12分)某理科考生参加自主招生面试,从道题中(道甲组题和道乙组题)不放回地依次任取道作答.(1)求该考生在第一次抽到甲组题的条件下,第二次和第三次均抽到乙组题的概率;(2)规定理科考生需作答道甲组题和道乙组题,该考生答对甲组题的概率均为,答对乙组题的概率均为,若每题答对得,否则得零分.现该生已抽到道题(道甲组题和道乙组题),求其所得总分的分布列与数学期望.19.(12分)(1)3个不同的球放入5个不同的盒子,每个盒子至多放1个球,共有多少种放法?(2)3个不同的球放入5个不同的盒子,每个盒子放球量不限,共有多少种放法?20.(12分)已知函数,且.(Ⅰ)若是偶函数,当时,,求时,的表达式;(Ⅱ)若函数在上是减函数,求实数的取值范围.21.(12分)已知在的展开式中,只有第5项的二项式系数最大.(1)求含的项的系数;(2)求展开式中所有的有理项.22.(10分)在某项体能测试中,规定每名运动员必需参加且最多两次,一旦第一次测试通过则不再参加第二次测试,否则将参加第二次测试.已知甲每次通过的概率为23,乙每次通过的概率为1(Ⅰ)求甲乙至少有一人通过体能测试的概率;(Ⅱ)记X为甲乙两人参加体能测试的次数和,求X的分布列和期望.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

求出函数的导数,求出切线方程的斜率,即可得到切线方程.【题目详解】曲线,解得y′=ex+xex,所以在点(2,1)处切线的斜率为1.曲线在点(2,1)处的切线方程是:y﹣1=x.即x﹣y+1=2.故选A.【题目点拨】本题考查曲线的切线方程的求法,考查计算能力2、B【解题分析】

由的面积为,可得,再由余弦定理求出,根据双曲线的定义可得,从而可得结论.【题目详解】因为的面积为,,所以,可得,,,所以离心率,故选B.【题目点拨】本题主要考查双曲线的定义及离心率,属于中档题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解.3、A【解题分析】分析:根据随机变量符合二项分布,根据二项分布的期望和方差公式得到关于的方程组,注意两个方程之间的关系,把一个代入另一个,以整体思想来解决,求出P的值,再求出n的值,得到结果.详解:随机变量服从分布,且,,①②即可求得,.故选:A点睛:本题考查离散型随机变量的期望和方差,考查二项分布的期望和方差公式,考查方差思想,是一个比较好的题目,技巧性比较强.4、C【解题分析】试题分析:,为偶函数,当且时,或,所以选择C。考点:1.导数运算;2.函数图象。5、C【解题分析】由题意得,每一封不同的电子邮件都有三种不同的投放方式,所以把封电子邮件投入个不同的邮箱,共有种不同的方法,故选C.6、C【解题分析】

由,得出,计算出基本事件的总数以及事件所包含的基本事件数,然后利用古典概型的概率公式可计算出所求事件的概率.【题目详解】,,即,事件“”所包含的基本事件有:、、、、、、、、、、、、、、、、、、、、,共个,所有的基本事件数为,因此,事件“”的概率为.故选:C.【题目点拨】本题考查利用古典概型的概率公式计算事件的概率,解题的关键就是求出总的基本事件数和所求事件所包含的基本事件数,考查计算能力,属于中等题.7、D【解题分析】分析:直接利用特称命题的否定解答.详解:由特称命题的否定得为:,,故答案为:D.点睛:(1)本题主要考查特称命题的否定,意在考查学生对该知识的掌握水平.(2)特称命题,特称命题的否定.8、C【解题分析】

按系统抽样的概念知应选C,可分两步:一是从2018人中剔除18留下的概率是,第二步从2000人中选50人选中的概率是,两者相乘即得.【题目详解】从2018人中剔除18人每一个留下的概率是,再从2000人中选50人被选中的概率是,∴每人入选的概率是.故选C.【题目点拨】本题考查随机抽样的事件与概率,在这种抽样机制中,每个个体都是无差别的个体,被抽取的概率都相等.9、C【解题分析】设,则:,则:,由勾股定理可得:,综上可得:则△的面积为:.本题选择C选项.点睛:(1)双曲线定义的集合语言:P={M|||MF1|-|MF2||=2a,0<2a<|F1F2|}是解决与焦点三角形有关的计算问题的关键,切记对所求结果进行必要的检验.(2)利用定义解决双曲线上的点与焦点的距离有关问题时,弄清点在双曲线的哪支上.10、B【解题分析】试题分析:第一类:有一个人分到一本小说和一本诗集,这种情况下的分法有:先将一本小说和一本诗集分到一个人手上,有种分法,将剩余的本小说,本诗集分给剰余个同学,有种分法,那共有种;第二类:有一个人分到两本诗集,这种情况下的分法有:先两本诗集分到一个人手上,有种情况,将剩余的本小说分给剩余个人,只有一种分法,那共有:种,第三类:有一个人分到两本小说,这种情况的分法有:先将两本小说分到一个人手上,有种情况,再将剩余的两本诗集和一本小说分给剩余的个人,有种分法,那共有:种,综上所述:总共有:种分法,故选B.考点:1、分布计数乘法原理;2、分类计数加法原理.【方法点睛】本题主要考查分类计数原理与分步计数原理及排列组合的应用,属于难题.有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件.解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率.11、D【解题分析】

根据题目可知,利用正态分布的对称性、含有一个量词的命题的否定、二项分布的变量的期望值公式以及不等式的基本性质逐项分析,得出答案.【题目详解】(1)随机变量服从正态分布,故选项正确.(2)已知原命题是全称命题,故其否定为特称命题,将换为,条件不变,结论否定即可,故B选项正确.(3)若随机变量服从二项分布:,则,故C选项正确.(4)当时,“a<b”不能推出“<”,故D选项错误.综上所述,故答案选D.【题目点拨】本题是一个跨章节综合题,考查了正态分布的对称性、含有一个量词的命题的否定、二项分布的变量的期望值公式以及不等式的基本性质四个知识点.12、B【解题分析】

根据对数的真数大于零,负数不能开偶次方根,分母不能为零求解.【题目详解】因为函数,所以,所以,解得,所以的定义域为.故选:B【题目点拨】本题主要考查函数定义域的求法,还考查了运算求解的能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、必要不充分【解题分析】分析:先举反例说明充分性不成立,再根据奇函数性质推导,说明必要性成立.详解:因为满足,但不是奇函数,所以充分性不成立,因为函数是上的奇函数,所以必要性成立.因此“”是“函数是上的奇函数”的必要不充分条件.,点睛:充分、必要条件的三种判断方法.1.定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.2.等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.14、【解题分析】

利用抛物线的定义,求出p,即可求C的方程;【题目详解】抛物线C:y2=2px(p>0)的准线方程为x,由抛物线的定义可知13,解得p=4,∴C的方程为y2=8x;故答案为【题目点拨】本题考查抛物线的定义与方程,熟记定义是关键,属于基础题.15、【解题分析】

利用函数的奇偶性和单调性,可得对恒成立,通过参变分离即得且对恒成立,求得相应的最大值和最小值,从而得到的取值范围.【题目详解】解:定义在R上的函数满足为偶函数对任意的不相等的实数,有成立在上单调递减,在上单调递增由在上恒成立得在上恒成立在上恒成立,即对恒成立此时且对恒成立设,则令,解得,随的变化如下表0当时,设,则当时,在上单调递减,即当时,则.综上所述,故答案为:.【题目点拨】本题考查了函数的奇偶性,考查了函数的单调性在解抽象不等式得应用,考查了运用导数求最值的方法.若对任意的不相等的实数,有成立,说明在区间上为减函数;若对任意的不相等的实数,有成立,说明在区间上为增函数.在解抽象不等式时,常常利用函数的单调性将抽象不等式转化为具体不等式.对于含参不等式在某区间上恒成立时,常常采用参变分离的方法,通过求出分离参数后函数的最大值或者最小值,来确定参数的取值范围.16、【解题分析】

设圆C1上存在点P(x0,y0),则Q(y0,x0),分别满足两个圆的方程,列出方程组,转化成两个新圆有公共点求参数范围.【题目详解】设圆C1上存在点P(x0,y0)满足题意,点P关于直线x-y=0的对称点Q(y0,x0),则,故只需圆x2+(y-1)2=r2与圆(x-1)2+(y-2)2=1有交点即可,所以|r-1|≤≤r+1,解得.故答案为:【题目点拨】此题考查圆与圆的位置关系,其中涉及点关于直线对称点问题,两个圆有公共点的判定方式.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)直线l的参数方程为x=tcosαy=3+tsinα(t为参数),圆C【解题分析】

(1)根据直线参数方程的几何意义得出参数方程,根据极坐标与直角坐标的关系化简得出圆的标准方程;(2)把直线l的参数方程代入圆的标准方程,根据参数的几何意义及根与系数的关系得出α.【题目详解】(1)因为直线l过点P(0,3),且倾斜角为所以直线l的参数方程为x=tcosαy=3+tsinα因为圆C的极坐标方程为ρ2所以ρ2所以圆C的普通方程为:x2圆C的标准方程为:(x-1)2(2)直线l的参数方程为x=tcosαy=3+tsinα,代入圆C整理得t2设M、N两点对应的参数分别为t1、t2,则△>0恒成立,t1所以|PM|-|PN|=t1因为0≤α<π,所以α=π4或【题目点拨】本题考查了参数方程、极坐标方程与直角坐标方程的转化,考查直线与圆的位置关系,属于中档题.18、(1);(2)见解析.【解题分析】分析:(1)利用条件概率公式,即可求得该考生在第一次抽到甲组题的条件下,第二次和第三次均抽到乙组题的概率;(2)先明确X的可能取值,求出相应的概率值,得到的分布列,进而得到数学期望详解:(1)记“该考生在第一次抽到甲组题”为事件A,“该考生第二次和第三次均抽到乙组题”为事件B,则所以该考生在第一次抽到甲组题的条件下,第二次和第三次均抽到乙组题的概率为(2)X的可能取值为:0,10,20,30,则,,,的分布列为X0102030P的数学期望为点睛:求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是:“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率和公式、独立事件的概率积公式,以及对立事件的概率公式等),求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布X~B(n,p)),则此随机变量的期望可直接利用这种典型分布的期望公式(E(X)=np)求得.19、(1).(2)【解题分析】

(1)把三个不同的小球分别放入5个不同的盒子里(每个盒子至多放一个球),实际上是从5个位置选3个位置用3个元素进行排列,即可求得答案.(2)因为3个不同的球放入5个不同的盒子,每个盒子放球量不限,所以一个球一个球地放到盒子里去,每只球都可有5种独立的放法,即可求得答案.【题目详解】(1)把3个不同的小球分别放入5不同的盒子里(每个盒子至多放一个球),实际上是从5个位置选3个位置用3个元素进行排列,共有种结果,共有:方法.(2)3个不同的球放入5个不同的盒子,每个盒子放球量不限一个球一个球地放到盒子里去,每只球都可有5种独立的放法,由分步乘法计数原理,放法共有种共有:放法.【题目点拨】本题的求解按照分步计数原理可先将球分组,选择盒子,再将球排列到选定的盒子里,这种先选后排的方法是最常用的思路,考查了分析能力和计算能力,属于中档题.20、(1)见解析;(2).【解题分析】分析:⑴根据偶函数性质

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论