版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届浙江省温州市环大罗山联盟高二数学第二学期期末质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设n=0π2A.20 B.-20 C.120 D.-1202.复数的共轭复数所对应的点位于复平面的()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知函数在处取得极值,对任意恒成立,则A. B. C. D.4.设双曲线C:的一个顶点坐标为(2,0),则双曲线C的方程是()A. B. C. D.5.用反证法证明命题“设为实数,则方程至多有一个实根”时,要做的假设是A.方程没有实根 B.方程至多有一个实根C.方程至多有两个实根 D.方程恰好有两个实根6.从1,2,3,4,5中任取2个不同的数,事件“取到的2个数之和为偶数”,事件“取到的2个数均为偶数”,则()A. B. C. D.7.由曲线,所围成图形的面积是()A. B. C. D.8.如图,设D是边长为l的正方形区域,E是D内函数与所构成(阴影部分)的区域,在D中任取一点,则该点在E中的概率是()A.B.C.D.9.我国古代数学名著九章算术记载:“刍甍者,下有袤有广,而上有袤无丈刍,草也;甍,屋盖也”翻译为:“底面有长有宽为矩形,顶部只有长没有宽为一条棱刍甍字面意思为茅草屋顶”如图,为一刍甍的三视图,其中正视图为等腰梯形,侧视图为等腰三角形则它的体积为A. B.160 C. D.6410.从5名女教师和3名男教师中选出一位主考、两位监考参加2019年高考某考场的监考工作.要求主考固定在考场前方监考,一女教师在考场内流动监考,另一位教师固定在考场后方监考,则不同的安排方案种数为()A.105 B.210 C.240 D.63011.甲乙两人有三个不同的学习小组,,可以参加,若每人必须参加并且仅能参加一个学习小组,则两人参加同一个小组的概率为()A.B.C.D.12.已知是定义在上的奇函数,且满足,当时,,则在上,的解集是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.四面体ABCD中,AB=CD=2,AC=AD=BC=BD=4,则异面直线AB与CD的夹角为_____.14.若过抛物线的焦点,且倾斜角为的直线交抛物线于,,则__________.15.点到直线:的距离等于3,则_______.16.某单位为了了解用电量(单位:千瓦时)与气温(单位:℃)之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:气温/℃181310-1用电量/千瓦时24343864由表中数据得回归直线方程中,预测当气温为℃时,用电量的千瓦时数约为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设椭圆的左焦点为,上顶点为.已知椭圆的短轴长为4,离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)设点在椭圆上,且异于椭圆的上、下顶点,点为直线与轴的交点,点在轴的负半轴上.若(为原点),且,求直线的斜率.18.(12分)设函数=[].(1)若曲线在点(1,)处的切线与轴平行,求;(2)若在处取得极小值,求的取值范围.19.(12分)已知展开式中的倒数第三项的系数为45,求:(1)含的项;(2)系数最大的项.20.(12分)设点为坐标原点,椭圆:的右顶点为,上顶点为,过点且斜率为的直线与直线相交于点,且.(1)求椭圆的离心率;(2)是圆:的一条直径,若椭圆经过,两点,求椭圆的方程.21.(12分)已知函数.(1)讨论的单调性;(2)若,求实数的取值范围.22.(10分)五一劳动节放假,某商场进行一次大型抽奖活动.在一个抽奖盒中放有红、橙、黄、绿、蓝、紫的小球各2个,分别对应1分、2分、3分、4分、5分、6分.从袋中任取3个小球,按3个小球中最大得分的8倍计分,计分在20分到35分之间即为中奖.每个小球被取出的可能性都相等,用表示取出的3个小球中最大得分,求:(1)取出的3个小球颜色互不相同的概率;(2)随机变量的概率分布和数学期望;(3)求某人抽奖一次,中奖的概率.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
先利用微积分基本定理求出n的值,然后利用二项式定理展开式通项,令x的指数为零,解出相应的参数值,代入通项可得出常数项的值。【题目详解】∵n=0二项式x-1x6令6-2r=0,得r=3,因此,二项式x-1x6故选:B.【题目点拨】本题考查定积分的计算和二项式指定项的系数,解题的关键就是微积分定理的应用以及二项式展开式通项的应用,考查计算能力,属于中等题。2、C【解题分析】
通过化简,于是可得共轭复数,判断在第几象限即得答案.【题目详解】根据题意得,所以共轭复数为,对应的点为,故在第三象限,答案为C.【题目点拨】本题主要考查复数的四则运算,共轭复数的概念,难度不大.3、C【解题分析】分析:根据函数在处取得极值解得,由于,对任意恒成立,则,确定的值。再由三次函数的二阶导数的几何意义,确定的对称中心,最后求解。详解:已知函数在处取得极值,故,解得。对任意恒成立,则,对任意恒成立,则所以.所以函数表达式为,,,令,解得,由此,由三次函数的性质,为三次函数的拐点,即为三次函数的对称中心,,所以,.故选C。点睛:在某点处的极值等价于在某点处的一阶导函数的根,二阶导函数的零点的几何意义为函数的拐点,三次函数的拐点的几何意义为三次函数的对称中心。二阶导函数的零点为拐点,但不是所有的拐点都为对称中心。4、D【解题分析】
利用双曲线的一个顶点坐标为,求得的值,即可求得双曲线的方程,得到答案.【题目详解】由题意,因为双曲线的一个顶点坐标为,所以,所以双曲线的标准方程为,故选D.【题目点拨】本题主要考查了双曲线的标准方程及其简单的几何性质的应用,着重考查了运算与求解能力,属于基础题.5、D【解题分析】
反证法证明命题时,首先需要反设,即是假设原命题的否定成立.【题目详解】命题“设为实数,则方程至多有一个实根”的否定为“设为实数,则方程恰好有两个实根”;因此,用反证法证明原命题时,只需假设方程恰好有两个实根.故选D【题目点拨】本题主要考查反证法,熟记反设的思想,找原命题的否定即可,属于基础题型.6、B【解题分析】两个数之和为偶数,则这两个数可能都是偶数或都是奇数,所以。而,所以,故选B7、A【解题分析】
先计算交点,再根据定积分计算面积.【题目详解】曲线,,交点为:围成图形的面积:故答案选A【题目点拨】本题考查了定积分的计算,意在考查学生的计算能力.8、A【解题分析】试题分析:正方形面积为1,阴影部分的面积为,所以由几何概型概率的计算公式得,点在E中的概率是,选A.考点:定积分的应用,几何概型.9、A【解题分析】
分析:由三视图可知该刍甍是一个组合体,它由成一个直三棱柱和两个全等的四棱锥组成,根据三视图中的数据可得其体积.详解:由三视图可知该刍甍是一个组合体,它由成一个直三棱柱和两个全等的四棱锥组成,根据三视图中的数据,求出棱锥与棱柱的体积相加即可,,故选A.点睛:本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.10、B【解题分析】试题分析:由题意得,先选一名女教师作为流动监控员,共有种,再从剩余的人中,选两名监考员,一人在前方监考,一人在考场后监考,共有种,所以不同的安排方案共有种方法,故选B.考点:排列、组合的应用.11、A【解题分析】依题意,基本事件的总数有种,两个人参加同一个小组,方法数有种,故概率为.12、C【解题分析】
首先结合函数的对称性和函数的奇偶性绘制函数图像,原问题等价于求解函数位于直线下方点的横坐标,数形结合确定不等式的解集即可.【题目详解】函数满足,则函数关于直线对称,结合函数为奇函数绘制函数的图像如图所示:的解集即函数位于直线下方点的横坐标,当时,由可得,结合可得函数与函数交点的横坐标为,据此可得:的解集是.本题选择C选项.【题目点拨】本题主要考查函数的奇偶性,函数的对称性等知识,意在考查学生的转化能力和计算求解能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
取的中点,连接,根据等腰三角形的性质可得,,再根据直线与平面垂直的判定定理可得平面,然后根据直线与平面垂直的性质可得,从而可得答案.【题目详解】如图所示:取的中点,连接,因为,为的中点,所以,因为,为的中点,所以,又,所以平面,因为平面,所以,所以异面直线与所成的角为.故答案为:【题目点拨】本题考查了等腰三角形的性质,考查了直线与平面垂直的判定定理和性质,属于基础题.14、【解题分析】
先求直线AB的方程,再利用弦长公式求.【题目详解】由题得抛物线的焦点为,所以直线AB的方程为,即.把代入得,所以=.故答案为:【题目点拨】本题主要考查抛物线的弦长的计算,意在考查学生对这些知识的理解掌握水平.15、或【解题分析】
直接利用点到直线的距离公式列方程,即可得到答案.【题目详解】由题意可得:,解得或.故答案为:或.【题目点拨】本题考查点到直线的距离公式,考查基本运算求解能力,属于基础题.16、68.【解题分析】分析:先求出样本中心,根据回归直线方程过样本中心求得,然后再进行估计.详解:由题意得,∴样本中心为.∵回归直线方程过样本中心,∴,∴.∴回归直线方程为.当时,,即预测当气温为℃时,用电量的千瓦时数约为.点睛:在回归分析中,线性回归方程过样本中心是一个重要的结论,利用此结论可求回归方程中的参数,也可求样本点中的参数.另外,利用回归方程可进行估计、作出预测.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)或.【解题分析】
(Ⅰ)由题意得到关于a,b,c的方程,解方程可得椭圆方程;(Ⅱ)联立直线方程与椭圆方程确定点P的坐标,从而可得OP的斜率,然后利用斜率公式可得MN的斜率表达式,最后利用直线垂直的充分必要条件得到关于斜率的方程,解方程可得直线的斜率.【题目详解】(Ⅰ)设椭圆的半焦距为,依题意,,又,可得,b=2,c=1.所以,椭圆方程为.(Ⅱ)由题意,设.设直线的斜率为,又,则直线的方程为,与椭圆方程联立,整理得,可得,代入得,进而直线的斜率,在中,令,得.由题意得,所以直线的斜率为.由,得,化简得,从而.所以,直线的斜率为或.【题目点拨】本题主要考查椭圆的标准方程和几何性质、直线方程等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想解决问题的能力.18、(1)1(2)(,)【解题分析】分析:(1)先求导数,再根据得a;(2)先求导数的零点:,2;再分类讨论,根据是否满足在x=2处取得极小值,进行取舍,最后可得a的取值范围.详解:解:(Ⅰ)因为=[],所以f′(x)=[2ax–(4a+1)]ex+[ax2–(4a+1)x+4a+3]ex(x∈R)=[ax2–(2a+1)x+2]ex.f′(1)=(1–a)e.由题设知f′(1)=2,即(1–a)e=2,解得a=1.此时f(1)=3e≠2.所以a的值为1.(Ⅱ)由(Ⅰ)得f′(x)=[ax2–(2a+1)x+2]ex=(ax–1)(x–2)ex.若a>,则当x∈(,2)时,f′(x)<2;当x∈(2,+∞)时,f′(x)>2.所以f(x)<2在x=2处取得极小值.若a≤,则当x∈(2,2)时,x–2<2,ax–1≤x–1<2,所以f′(x)>2.所以2不是f(x)的极小值点.综上可知,a的取值范围是(,+∞).点睛:利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.19、(1)210x3(2)【解题分析】
(1)由已知得:,即,∴,解得(舍)或,由通项公式得:,令,得,∴含有的项是.(2)∵此展开式共有11项,∴二项式系数(即项的系数)最大项是第6项,∴20、(1).(2).【解题分析】分析:(1)运用向量的坐标运算,可得M的坐标,进而得到直线OM的斜率,进而得证;(2)由(1)知,椭圆方程设为,设PQ的方程,与椭圆联立,运用韦达定理和中点坐标公式,以及弦长公式,解方程即可得到a,b的值,进而得到椭圆方程.详解:(1)∵,,,所以.∴,解得,于是,∴椭圆的离心率为.(2)由(1)知,∴椭圆的方程为即①依题意,圆心是线段的中点,且.由对称性可知,与轴不垂直,设其直线方程为,代入①得:,设,,则,,由得,解得.于是.于是.解得:,,∴椭圆的方程为.点睛:本题考查椭圆的方程和性质,考查向量共线的坐标表示,考查直线方程和椭圆方程联立,运用韦达定理以及弦长公式,化简整理的运算能力,属于中档题.21、(1)见
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论