2024届广东省中山一中、仲元中学等七校数学高二下期末统考模拟试题含解析_第1页
2024届广东省中山一中、仲元中学等七校数学高二下期末统考模拟试题含解析_第2页
2024届广东省中山一中、仲元中学等七校数学高二下期末统考模拟试题含解析_第3页
2024届广东省中山一中、仲元中学等七校数学高二下期末统考模拟试题含解析_第4页
2024届广东省中山一中、仲元中学等七校数学高二下期末统考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广东省中山一中、仲元中学等七校数学高二下期末统考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知抛物线的参数方程为,若斜率为1的直线经过抛物线的焦点,且与抛物线相交于A,B两点,则线段AB的长为A. B. C.8 D.42.已知函数在恰有两个零点,则实数的取值范围是()A. B.C. D.3.完成一项工作,有两种方法,有5个人只会用第一种方法,另外有4个人只会用第二种方法,从这9个人中选1个人完成这项工作,则不同的选法共有()A.5种 B.4种 C.9种 D.20种4.已知x>0,y>0,x+2y+2xy=8,则x+2y的最小值是A.3 B.4 C. D.5.已知,,若,则x的值为()A. B. C. D.6.若实数a,b满足a+b=2,则的最小值是()A.18 B.6 C.2 D.47.一张储蓄卡的密码共有位数字,每位数字都可以是中的任意一个.某人在银行自动取款机上取钱时,忘记了密码的最后一位数字,任意按最后一位数字,则不超过次就按对的概率为()A. B. C. D.8.设函数f(x)=,若函数f(x)的最大值为﹣1,则实数a的取值范围为()A.(﹣∞,﹣2) B.[2,+∞) C.(﹣∞,﹣1] D.(﹣∞,﹣2]9.方程的实根所在的区间为()A. B. C. D.10.若定义在上的函数的导函数的图象如图所示,则().A.函数有1个极大值,2个极小值B.函数有2个极大值,3个极小值C.函数有3个极大值,2个极小值D.函数有4个极大值,3个极小值11.在ΔABC中,cosA=sinB=12A.3 B.23 C.3 D.12.已知函数,若曲线在点处的切线方程为,则实数的取值为()A.-2 B.-1 C.1 D.2二、填空题:本题共4小题,每小题5分,共20分。13.函数,若函数恰有两个零点,则实数的取值范围是______.14.某林场有树苗3000棵,其中松树苗400棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的棵数为.15.已知三棱锥的四个顶点都在球的球面上,且球的表面积为,,平面,,则三棱锥的体积为__________.16.已知函数与的图象有且只有三个交点,则实数的取值范围为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数f(x)=e(Ⅰ)求函数f(x)极值;(Ⅱ)若对任意x>0,f(x)>12a18.(12分)用数学归纳法证明.19.(12分)4个不同的红球和6个不同的白球放入同一个袋中,现从中取出4个球.(1)若取出的红球的个数不少于白球的个数,则有多少不同的取法?(2)取出一个红球记2分,取出一个白球记1分,若取出4个球所得总分不少于5分,则有多少种不同取法.20.(12分)已知椭圆的离心率为,且.(1)求椭圆的标准方程;(2)直线:与椭圆交于A,B两点,是否存在实数,使线段AB的中点在圆上,若存在,求出的值;若不存在,说明理由.21.(12分)已知函数.(1)若曲线在点处的切线与直线平行,求的值;(2)讨论函数的单调性.22.(10分)已知函数(,)的最大值为正实数,集合,集合.(1)求和;(2)定义与的差集:,设、、设均为整数,且,为取自的概率,为取自的概率,写出与的二组值,使,.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】分析:先根据抛物线方程求得抛物线的焦点坐标,进而根据点斜式求得直线的方程与抛物线方程联立,消去,根据韦达定理求得的值,进而根据抛物线的定义可知求得答案.详解:抛物线的参数方程为,普通方程为,抛物线焦点为,且直线斜率为1,

则直线方程为,代入抛物线方程得,设根据抛物线的定义可知|,

故选:C.点睛:本题主要考查了直线与圆锥曲线的关系,抛物线的简单性质.对学生基础知识的综合考查.关键是:将直线的方程代入抛物线的方程,消去y得到关于x的一元二次方程,再结合根与系数的关系,利用弦长公式即可求得|AB|值,从而解决问题.2、B【解题分析】

本题可转化为函数与的图象在上有两个交点,然后对求导并判断单调性,可确定的图象特征,即可求出实数的取值范围.【题目详解】由题意,可知在恰有两个解,即函数与的图象在上有两个交点,令,则,当可得,故时,;时,.即在上单调递减,在上单调递增,,,,因为,所以当时,函数与的图象在上有两个交点,即时,函数在恰有两个零点.故选B.【题目点拨】已知函数有零点(方程有根)求参数值常用的方法:(1)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(2)数形结合:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后观察求解.3、C【解题分析】

分成两类方法相加.【题目详解】会用第一种方法的有5个人,选1个人完成这项工作有5种选择;会用第二种方法的有4个人,选1个人完成这项工作有4种选择;两者相加一共有9种选择,故选C.【题目点拨】本题考查分类加法计数原理.4、B【解题分析】

解析:考察均值不等式,整理得即,又,5、D【解题分析】此题考查向量的数量积解:因为,所以选D.答案:D6、B【解题分析】

由重要不等式可得,再根据a+b=2,代入即可得解.【题目详解】解:由实数a,b满足a+b=2,有,当且仅当,即时取等号,故选:B.【题目点拨】本题考查了重要不等式的应用及取等的条件,重点考查了运算能力,属基础题.7、B【解题分析】

利用互斥事件概率加法公式和相互独立事件概率乘法公式直接求解,即可求得答案.【题目详解】设第次按对密码为事件第一次按对第一次按错,第二次按对第一次按错,第二次按错,第三次按对事件,事件,事件是互斥,任意按最后一位数字,则不超过次就按对的概率由概率的加法公式得:故选:C.【题目点拨】本题考查概率的求法,考查互斥事件概率加法公式和相互独立事件概率乘法公式等基础知识,考查运算求解能力,是基础题.8、D【解题分析】

考虑x≥1时,f(x)递减,可得f(x)≤﹣1,当x<1时,由二次函数的单调性可得f(x)max=1+a,由题意可得1+a≤﹣1,可得a的范围.【题目详解】当x≥1时,f(x)=﹣log1(x+1)递减,可得f(x)≤f(1)=﹣1,当且仅当x=1时,f(x)取得最大值﹣1;当x<1时,f(x)=﹣(x+1)1+1+a,当x=﹣1时,f(x)取得最大值1+a,由题意可得1+a≤﹣1,解得a≤﹣1.故选:D.【题目点拨】本题考查分段函数的最值求法,注意运用对数函数和二次函数的单调性,考查运算能力,属于中档题.9、B【解题分析】

构造函数,考查该函数的单调性,结合零点存在定理得出答案.【题目详解】构造函数,则该函数在上单调递增,,,,由零点存在定理可知,方程的实根所在区间为,故选B.【题目点拨】本题考查零点所在区间,考查零点存在定理的应用,注意零点存在定理所适用的情形,必要时结合单调性来考查,这是解函数零点问题的常用方法,属于基础题.10、B【解题分析】

利用函数取得极大值的充分条件即可得出.【题目详解】解:只有一个极大值点.当时,,当时,.当时,,时,,时,,且,,,,,函数在,处取得极大值.,,处取得极小值.故选:B.【题目点拨】本题考查极值点与导数的关系,熟练掌握函数取得极大值的充分条件是解题的关键,属于基础题.11、B【解题分析】

通过cosA=sinB=1【题目详解】由于cosA=12,A∈(0,π),可知A=π3,而sinB=12,B=π【题目点拨】本题主要考查解三角形的综合应用,难度不大.12、B【解题分析】

求出函数的导数,利用切线方程通过f′(0),求解即可;【题目详解】f(x)的定义域为(﹣1,+∞),因为f′(x)a,曲线y=f(x)在点(0,f(0))处的切线方程为y=2x,可得1﹣a=2,解得a=﹣1,故选:B.【题目点拨】本题考查函数的导数的几何意义,切线方程的求法,考查计算能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

首先将题意转化为函数与恰有两个交点,当和时,利用函数的图象易得交点个数.当,利用表示直线的斜率,结合图象即可求出的范围.【题目详解】由题知:函数恰有两个零点.等价于函数与恰有两个交点.当时,函数与恰有一个交点,舍去.当时,函数与恰有两个交点.当时,如图设与的切点为,,,,则切线方程为,原点代入,解得,.因为函数与恰有两个交点,由图知.综上所述:或.故答案为:.【题目点拨】本题主要考查函数的零点问题,分类讨论和数形结合为解决本题的关键,属于中档题.14、20【解题分析】试题分析:由分层抽样的方法知样本中松树苗的棵数应为150的,所以样本中松树苗的棵数应为.考点:分层抽样.15、1【解题分析】

由题意两两垂直,可把三棱锥补成一个长方体,则长方体的外接球就是三棱锥的外接球.由此计算即可.【题目详解】∵平面,∴,又,∴三棱锥可以为棱补成一个长方体,此长方体的外接球就是三棱锥的外接球.由,得,∴,即,,.故答案为1.【题目点拨】本题考查棱锥及其外接球,考查棱锥的体积,解题是把三棱锥补成长方体,则长方体的外接球就是三棱锥的外接球,而长方体的对角线就是球的直径,这样计算方便.16、【解题分析】

令,求导数,从而确定函数的单调性及极值,从而求出a的范围.【题目详解】由题意得,,

,令,则令,解得:或,

令,解得:,

在上是增函数,在上是减函数,在上是增函数,

,且当时,,当时,

所以函数与的图象有且只有三个交点,

则只需和图象有且只有三个交点,

故答案为:【题目点拨】本题考查了函数的单调性、极值问题,考查导数的应用以及转化思想,属于难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)f(x)极小值=1,无极大值;(2)【解题分析】

(Ⅰ)先对函数求导,利用导数的方法确定函数单调性,进而可得出极值;(Ⅱ)先设g(x)=ex-x-12ax2-1,对函数【题目详解】解:(Ⅰ)令f'(x)=x(-∞,0)0(0,+∞)f-0+f(x)↓极小值↑∴f(x)(II)对任意x>0,f(x)>12a设g(x)=ex-x-①当a≤0时,g'(x)单调递增,g'②当0<a≤1时,令h(x)=g'(x),h'(x)=e③当a>1时,当0<x<lna时,h'(x)=ex-a<0综上,a的取值范围为(-∞,1].【题目点拨】本题主要考查导数的应用,通常需要对函数求导,用导数的方法研究函数的单调性、极值等,属于常考题型.18、见解析.【解题分析】分析:直接利用数学归纳法的证明步骤证明不等式,(1)验证时不等式成立;(2)假设当时成立,利用放缩法证明时,不等式也成立.详解:证明:①当时,左边,不等式成立.②假设当时,不等式成立,即,则当时,,∵,∴,∴当时,不等式成立.由①②知对于任意正整数,不等式成立.点睛:本题是中档题,考查数学归纳法的证明步骤,注意不等式的证明方法,放缩法的应用,考查逻辑推理能力.19、(1);(2).【解题分析】

(1)若取出的红球的个数不少于白球的个数,则有红、红白、红白三种情况,然后利用分类计数原理可得出答案;(2)若取出的球的总分不少于分,则有红、红白、红白和红白四种情况,然后利用分类计数原理可得出答案.【题目详解】(1)若取出的红球个数不少于白球个数,则有红、红白、红白三种情况,其中红有种取法,红白有种取法,红白有种取法.因此,共有种不同的取法;(2)若取出的个球的总分不少于分,则有红、红白、红白和红白四种情况.其中红有种取法,红白有种取法,红白有种取法,红白有种不同的取法.因此,共有种不同的取法.【题目点拨】本题考查分类加法计数原理应用,在解题时要熟练利用分类讨论思想,遵循不重不漏的原则,考查运算求解能力,属于中等题.20、(1);(2)实数不存在,理由见解析.【解题分析】试题分析:(1)运用椭圆的离心率公式和的关系,解方程可得,进而得到椭圆方程;(2)设,,线段的中点为.联立直线方程和椭圆方程,运用韦达定理和中点坐标公式,求得的坐标,代入圆的方程,解方程可得,进而判断不存在.试题解析:(1)由题意得,解得故椭圆的方程为;(2)设,,线段的中点为联立直线与椭圆的方程得,即,即,,所以,即.又因为点在圆上,可得,解得与矛盾.故实数不存在.考点:椭圆的简单性质.21、(1)3;(2)见解析.【解题分析】

(1)求出函数的导数,利用斜率求出实数的值即可;(2)求出函数的定义域以及导数,在定义域下,讨论大于0、等于0、小于0情况下导数的正负,即可得到函数的单调性。【题目详解】(1)因为,所以,即切线的斜率,又切线与直

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论