2024届北京市航空航天大学附属中学数学高二第二学期期末复习检测试题含解析_第1页
2024届北京市航空航天大学附属中学数学高二第二学期期末复习检测试题含解析_第2页
2024届北京市航空航天大学附属中学数学高二第二学期期末复习检测试题含解析_第3页
2024届北京市航空航天大学附属中学数学高二第二学期期末复习检测试题含解析_第4页
2024届北京市航空航天大学附属中学数学高二第二学期期末复习检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届北京市航空航天大学附属中学数学高二第二学期期末复习检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数f(x)在R上可导,且f(x)=x2A.f(x)=x2C.f(x)=x22.下列结论中正确的是()A.导数为零的点一定是极值点B.如果在附近的左侧,右端,那么是极大值C.如果在附近的左侧,右端,那么是极小值D.如果在附近的左侧,右端,那么是极大值3.已知随机变量服从二项分布,且,则()A. B. C. D.4.我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架歼-15飞机准备着舰.如果甲、乙两机必须相邻着舰,而丙、丁两机不能相邻着舰,那么不同的着舰方法有()A.12种 B.18种 C.24种 D.48种5.已知变量,之间具有线性相关关系,其回归方程为,若,,则的值为()A. B. C. D.16.若复数,则复数在复平面内的对应点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.已知双曲线的一条渐近线方程为,则此双曲线的离心率为()A. B. C. D.8.两个半径都是的球和球相切,且均与直二面角的两个半平面都相切,另有一个半径为的小球与这二面角的两个半平面也都相切,同时与球和球都外切,则的值为()A. B. C. D.9.《数学统综》有如下记载:“有凹钱,取三数,小小大,存三角”.意思是说“在凹(或凸)函数(函数值为正)图象上取三个点,如果在这三点的纵坐标中两个较小数之和最大的数,则存在将这三点的纵坐标值作为三边长的三角形”.现已知凹函数,在上取三个不同的点,均存在为三边长的三角形,则实数的取值范围为()A. B. C. D.10.已知函数为偶函数,记,,,则的大小关系为()A. B. C. D.11.与复数相等的复数是()A. B. C. D.12.在平面直角坐标系中,曲线的参数方程为(为参数),直线的方程为,则曲线上的点到直线的距离的最小值是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.对于无理数,用表示与最接近的整数,如,.设,对于区间的无理数,定义,我们知道,若,和,则有以下两个恒等式成立:①;②,那么对于正整数和两个无理数,,以下两个等式依然成立的序号是______;①;②.14.在的二项展开式中,常数项的值为__________15.若ax2+的展开式中x5的系数是—80,则实数a=_______.16.设x,y满足约束条件,则的最小值为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知二次函数满足,且.(1)求的解析式;(2)设函数,当时,求的最小值;(3)设函数,若对任意,总存在,使得成立,求m的取值范围.18.(12分)已知圆圆心为,定点,动点在圆上,线段的垂直平分线交线段于点.求动点的轨迹的方程;若点是曲线上一点,且,求的面积.19.(12分)已知椭圆:的离心率为,短轴长为1.(1)求椭圆的标准方程;(1)若圆:的切线与曲线相交于、两点,线段的中点为,求的最大值.20.(12分)已知函数.(1)求函数在区间上的最大值和最小值;(2)已知,求满足不等式的的取值范围.21.(12分)《福建省高考改革试点方案》规定:从2018年秋季高中入学的新生开始,不分文理科;2021年开始,高考总成绩由语数外3门统考科目和物理、化学等六门选考科目构成,将每门选考科目的考生原始成绩从高到低划分为A、B+、B、C+、C、D+、D、E共8个等级,参照正态分布原则,确定各等级人数所占比例分别为3%、7%、18%、22%、22%、18%、7%、3%,选考科目成绩计入考生总成绩时,将A至E等级内的考生原始成绩,依照等比例转换法则,分别转换到[91,100]、[81,90]、[71.80]、[61,70]、[51,60]、[41,50]、[31,40]、[21,30]八个分数区间,得到考生的等级成绩,某校高一年级共2000人,为给高一学生合理选科提供依据,对六门选考科目进行测试,其中化学考试原始成绩基本服从正态分布.(1)求化学原始成绩在区间(57,96)的人数;(2)以各等级人数所占比例作为各分数区间发生的概率,按高考改革方案,若从全省考生中随机抽取3人,记表示这3人中等级成绩在区间[71,90]的人数,求事件的概率(附:若随机变量,,)22.(10分)某公司的一次招聘中,应聘者都要经过三个独立项目,,的测试,如果通过两个或三个项目的测试即可被录用.若甲、乙、丙三人通过,,每个项目测试的概率都是.(1)求甲恰好通过两个项目测试的概率;(2)设甲、乙、丙三人中被录用的人数为,求的概率分布和数学期望.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

先对函数f(x)求导,然后将x=1代入导函数中,可求出f'(1)=-2,从而得到f(x)【题目详解】由题意,f'(x)=2x+2f'(1),则f故答案为A.【题目点拨】本题考查了函数解析式的求法,考查了函数的导数的求法,属于基础题.2、B【解题分析】

根据极值点的判断方法进行判断.【题目详解】若,则,,但是上的增函数,故不是函数的极值点.因为在的左侧附近,有,在的右侧附近,有,故的左侧附近,有为增函数,在的右侧附近,有为减函数,故是极大值.故选B.【题目点拨】函数的极值刻画了函数局部性质,它可以理解为函数图像具有“局部最低(高)”的特性,用数学语言描述则是:“在的附近的任意,有()”.另外如果在附近可导且的左右两侧导数的符号发生变化,则必为函数的极值点,具体如下.(1)在的左侧附近,有,在的右侧附近,有,则为函数的极大值点;(1)在的左侧附近,有,在的右侧附近,有,则为函数的极小值点;3、A【解题分析】

由二项分布与次独立重复实验的模型得:,,则,得解.【题目详解】因为服从二项分布,,,所以,,即,,则,故选:A.【题目点拨】本题考查二项分布与次独立重复实验的模型,属于基础题.4、C【解题分析】试题分析:先将甲、乙两机看成一个整体,与另外一机进行全排列,共有种排列方法,且留有三个空;再从三个位置中将丙、丁两机进行排列,有种方法;由分步乘法计数原理,得不同的着舰方法有种.考点:排列组合.5、A【解题分析】

根据题意,可知,,,代入即可求这组样本数据的回归直线方程,即可求解出答案。【题目详解】依题意知,,而直线一定经过点,所以,解得.故答案选A。【题目点拨】本题主要考查了根据线性回归方程的性质求回归直线,线性回归直线过点,这个点称为样本点的中心,回归直线一定过此点。6、B【解题分析】

把复数为标准形式,写出对应点的坐标.【题目详解】,对应点,在第二象限.故选B.【题目点拨】本题考查复数的几何意义,属于基础题.7、B【解题分析】

由渐近线方程得出的值,结合可求得【题目详解】∵双曲线的一条渐近线方程为,∴,∴,解得,即离心率为.故选:B.【题目点拨】本题考查双曲线的渐近线和离心率,解题时要注意,要与椭圆中的关系区别开来.8、D【解题分析】

取三个球心点所在的平面,过点、分别作、,垂足分别为点,过点分别作,,分别得出、以及,然后列出有关的方程,即可求出的值.【题目详解】因为三个球都与直二面角的两个半平面相切,所以与、、共面,如下图所示,过点、分别作、,垂足分别为点,过点分别作,,则,,,,,,所以,,等式两边平方得,化简得,由于,解得,故选D.【题目点拨】本题主要考查球体的性质,以及球与平面相切的性质、二面角的性质,考查了转化思想与空间想象能力,属于难题.转化是数学解题的灵魂,合理的转化不仅仅使问题得到了解决,还可以使解决问题的难度大大降低,本题将空间问题转化为平面问题是解题的关键.9、A【解题分析】

由题意,三点的纵坐标中两个较小数之和小于等于2,可得m2﹣m+2≤2,即可得出结论.【题目详解】易知,所以,在上的最小值为.由题意可知,当,∴或,,故选A.【题目点拨】本题考查新定义,考查学生转化问题的能力,正确转化是关键.10、C【解题分析】试题分析:因为为偶函数,所以,在上单调递增,并且,因为,,故选C.考点:函数的单调性【思路点睛】本题考察的是比较大小相关知识点,一般比较大小我们可以采用作差法、作商法、单调性法和中间量法,本题的题设中有解析式且告诉我们为偶函数,即可求出参数的值,所以我们采用单调性法,经观察即可得到函数的单调性,然后根据可以通过函数的奇偶性转化到同一侧,进而判断出几个的大小,然后利用函数的单调性即可判断出所给几个值的大小.11、C【解题分析】

根据复数运算,化简复数,即可求得结果.【题目详解】因为.故选:C.【题目点拨】本题考查复数的运算,属基础题.12、B【解题分析】

设曲线上任意一点的坐标为,利用点到直线的距离公式结合辅助角公式可得出曲线上的点到直线的距离的最小值.【题目详解】设曲线上任意一点的坐标为,所以,曲线上的一点到直线的距离为,当时,取最小值,且,故选:B.【题目点拨】本题考查椭圆参数方程的应用,考查椭圆上的点到直线距离的最值问题,解题时可将椭圆上的点用参数方程表示,利用三角恒等变换思想求解,考查运算求解能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。13、①,②..【解题分析】

根据新定义,结合组合数公式,进行分类讨论即可.【题目详解】当时,由定义可知:,,当时,由定义可知:,,故①成立;当时,由定义可知:,,当时,由定义可知:,故②成立.故答案为:①,②.【题目点拨】本题考查了新定义题,考查了数学阅读能力,考查了组合数的计算公式,考查了分类讨论思想.14、15【解题分析】

写出二项展开式通项,通过得到,从而求得常数项.【题目详解】二项展开式通项为:当时,常数项为:本题正确结果:【题目点拨】本题考查二项式定理的应用,属于基础题.15、-2【解题分析】试题分析:因为,所以由,因此【考点】二项式定理【名师点睛】本题是二项式定理问题中的常见题型,二项展开式的通项往往是考查的重点.本题难度不大,易于得分.能较好地考查考生的基本运算能力等.16、【解题分析】

先画出可行域,根据表示可行域内的点到定点的距离的平方,即可求出最小值。【题目详解】作出不等式组表示的可行域为一个三角形区域(包括边界),表示可行域内的点到定点的距离的平方,由图可知,该距离的最小值为点到直线的距离,故.【题目点拨】本题考查线性规划,属于基础题。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)【解题分析】

(1)根据二次函数,则可设,再根据题中所给的条件列出对应的等式对比得出所求的系数即可.(2)根据(1)中所求的求得,再分析对称轴与区间的位置关系进行分类讨论求解的最小值即可.(3)根据题意可知需求与在区间上的最小值.再根据对数函数与二次函数的单调性求解最小值即可.【题目详解】(1)设.①∵,∴,又∵,∴,可得,∴解得即.(2)由题意知,,,对称轴为.①当,即时,函数h(x)在上单调递增,即;②当,即时,函数h(x)在上单调递减,在上单调递增,即.综上,(3)由题意可知,∵函数在上单调递增,故最小值为,函数在上单调递减,故最小值为,∴,解得.【题目点拨】本题主要考查利用待定系数法求解二次函数解析式的方法,二次函数对称轴与区间关系求解最值的问题,以及恒成立和能成立的问题等.属于中等题型.18、;.【解题分析】

由已知,故,即点轨迹是以、为焦点的椭圆,根据,,得出椭圆方程;由知,又因为,得出,进而求出,算出面积即可.【题目详解】由已知,故点轨迹是以、为焦点的椭圆.设其方程为则即,又,故.点的轨迹的方程为:.由知.又.有,.【题目点拨】本题考查椭圆得方程求法,余弦定理,三角形面积公式的应用,属于中档题.19、(1);(1)【解题分析】试题分析:(1)待定系数法求椭圆方程;(1)借助韦达定理表示的最大值,利用二次函数求最值.试题解析:(I),所以,又,解得.所以椭圆的标准方程.(II)设,,,易知直线的斜率不为,则设.因为与圆相切,则,即;由消去,得,则,,,,即,,设,则,,当时等号成立,所以的最大值等于.20、(1)最小值为-1,最大值为8;(2)【解题分析】

(1)根据二次函数在区间上的单调性可求得答案;(2)根据为增函数可将不等式化为,再解一元二次不等式可得到答案.【题目详解】(1)因为在上递减,在上递增,所以时,取得最小值,最小值为,时,取得最大值,最大值为.(2)因为为增函数,且,所以不等式可化为,所以,即,所以,所以或,所以不等式的解集为.【题目点拨】本题考查了利用二次函数的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论