




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东省深圳市普通高中数学高二第二学期期末达标检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.2018年5月1日,某电视台的节目主持人手里提着一个不透明的袋子,若袋中共有10个除颜色外完全相同的球,其中有7个白球,3个红球,若从袋中任取2个球,则“取得2个球中恰有1个白球1个红球”的概率为()A. B. C. D.2.证明等式时,某学生的证明过程如下(1)当n=1时,,等式成立;(2)假设时,等式成立,即,则当时,,所以当时,等式也成立,故原式成立.那么上述证明()A.过程全都正确 B.当n=1时验证不正确C.归纳假设不正确 D.从到的推理不正确3.从分别标有1,2,…,9的9张卡片中有放回地随机抽取5次,每次抽取1张.则恰好有2次抽到奇数的概率是()A. B.C. D.4.抛物线的焦点为,点是上一点,,则()A. B. C. D.5.在棱长为的正方体中,如果、分别为和的中点,那么直线与所成角的大小为()A. B. C. D.6.若角的终边经过点,则()A. B. C. D.7.已知是函数的一个零点,若,则()A., B.,C., D.,8.在等比数列{an}中,Sn是它的前n项和,若q=2,且a2与2a4的等差中项为18,则S5=()A.-62 B.62 C.32 D.-329.已知椭圆C:x225+y2m2=1 (m>0)的左、右焦点分别为FA.2 B.3 C.23 D.10.若点M为圆上的动点,则点M到双曲线渐近线的距离的最小值为()A. B. C. D.11.设,向量,若,则等于()A. B. C.-4 D.412.设数列的前项和为,若,且,则()A.2019 B. C.2020 D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数据的方差为1,则数据的方差为____.14.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是红球,白球和黑球的事件.再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件.给出下列结论:①P(B)25;②P(B|A1)511;③事件B与事件A1相互独立;④A1,A2,A3是两两互斥的事件;⑤P(B)的值不能确定,因为它与A1,A2,A3中究竟哪一个发生有关;其中正确的有()②④①③②④⑤②③④⑤15.一个三角形的三条边成等比数列,那么,公比q的取值范围是__________.16.设,则等于_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知定义在上的函数.(1)若的最大值为3,求实数的值;(2)若,求的取值范围.18.(12分)在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的方程为,过点的直线的参数方程为(为参数).(Ⅰ)求直线的普通方程与曲线的直角坐标方程;(Ⅱ)若直线与曲线交于、两点,求的值,并求定点到,两点的距离之积.19.(12分)已知集合,其中。表示集合A中任意两个不同元素的和的不同值的个数。(1)若,分别求和的值;(2)若集合,求的值,并说明理由;(3)集合中有2019个元素,求的最小值,并说明理由。20.(12分)“学习强国”APP是由中宣部主管,以新时代中国特色社会主义思想和党的十九大精神为主要内容的“PC端+手机客户端”两大终端二合一模式的学习平台,2019年1月1日上线后便成为了党员干部群众学习的“新助手”.为了调研某地党员在“学习强国”APP的学习情况,研究人员随机抽取了名该地党员进行调查,将他们某两天在“学习强国”APP上所得的分数统计如表所示:分数频数601002020频率0.30.50.10.1(1)由频率分布表可以认为,这名党员这两天在“学习强国”上的得分近似服从正态分布,其中近似为这名党员得分的平均数(同一组中的数据用该组区间的中点值作代表),近似这名党员得分的方差,求;(2)以频率估计概率,若从该地区所有党员中随机抽取人,记抽得这两天在“学习强国”上的得分不低于分的人数为,求的分布列与数学期望.参考数据:,若,则,,21.(12分)已知直线:(为参数)和圆的极坐标方程:.(1)分别求直线和圆的普通方程并判断直线与圆的位置关系;(2)已知点,若直线与圆相交于,两点,求的值.22.(10分)如图,在空间几何体中,四边形是边长为2的正方形,,,.(Ⅰ)求证:平面;(Ⅱ)求直线与平面所成角的正弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
由组合数公式求出从10个球中任取2个球的取法个数,再求出有1个红球1个白球的取法个数,即可求出结论.【题目详解】从10个球中任取2个球共有种取法,其中“有1个红球1个白球”的情况有(种),所以所求概率.故选:B.【题目点拨】本题考查利用组合数公式求古典概型的概率,属于基础题.2、A【解题分析】分析:由题意结合数学归纳法的证明方法考查所给的证明过程是否存在错误即可.详解:考查所给的证明过程:当时验证是正确的,归纳假设是正确的,从到的推理也是正确的,即证明过程中不存在任何的问题.本题选择A选项.点睛:本题主要考查数学归纳法的概念及其应用,意在考查学生的转化能力和计算求解能力.3、B【解题分析】
先求出每次抽到奇数的概率,再利用n次独立重复试验中恰好发生k的概率计算公式求出结果.【题目详解】每次抽到奇数的概率都相等,为,故恰好有2次抽到奇数的概率是••,故选:B.【题目点拨】本题主要考查n次独立重复试验中恰好发生k的概率计算公式的应用,属于基础题.4、B【解题分析】
根据抛物线定义得,即可解得结果.【题目详解】因为,所以.故选B【题目点拨】本题考查抛物线定义,考查基本分析求解能力,属基础题.5、B【解题分析】
作出图形,取的中点,连接、,证明四边形为平行四边形,计算出的三边边长,然后利用余弦定理计算出,即可得出异面直线与所成角的大小.【题目详解】如下图所示:取的中点,连接、,、分别为、的中点,则,且,在正方体中,,为的中点,且,则,所以,四边形为平行四边形,,则异面直线与所成的角为或其补角.在中,,,.由余弦定理得.因此,异面直线与所成角的大小为.故选B.【题目点拨】本题考查异面直线所成角的计算,一般利用定义法或空间向量法计算,考查计算能力,属于中等题.6、A【解题分析】
用余弦的定义可以直接求解.【题目详解】点到原点的距离为,所以,故本题选A.【题目点拨】本题考查了余弦的定义,考查了数学运算能力.7、B【解题分析】
转化是函数的一个零点为是函数与的交点的横坐标,画出函数图像,利用图像判断即可【题目详解】因为是函数的一个零点,则是函数与的交点的横坐标,画出函数图像,如图所示,则当时,在下方,即;当时,在上方,即,故选:B【题目点拨】本题考查函数的零点问题,考查数形结合思想与转化思想8、B【解题分析】
先根据a2与2a4的等差中项为18求出,再利用等比数列的前n项和求S5.【题目详解】因为a2与2a4的等差中项为18,所以,所以.故答案为:B【题目点拨】(1)本题主要考查等比数列的通项和前n项和,考查等差中项,意在考查学生对这些知识的掌握水平和基本的计算能力.(2)等比数列的前项和公式:.9、D【解题分析】
由椭圆的定义知ΔPF1F2的周长为2a+2c=16,可求出c的值,再结合a、b、c的关系求出【题目详解】设椭圆C的长轴长为2a,焦距为2c,则2a=10,c=a由椭圆定义可知,ΔPF1F2的周长为∵m>0,解得m=4,故选:D。【题目点拨】本题考查椭圆的定义的应用,考查利用椭圆定义求椭圆的焦点三角形问题,在处理椭圆的焦点与椭圆上一点线段(焦半径)问题,一般要充分利用椭圆定义来求解,属于基础题。10、B【解题分析】
首先判断圆与渐近线的位置关系为相离,然后利用圆上一点到直线距离的最小值等于圆心到直线的距离减去圆的半径,由此即可得到答案。【题目详解】由题知,圆的圆心,半径.由双曲线的渐近线方程为,则圆心C到双曲线渐近线的距离为,故圆C与双曲线渐近线相离,圆C上动点M到双曲线渐近线的最小距离为,故选B.【题目点拨】本题考查点到直线的距离公式的运用,考查学生基本的计算能力,属于基础题,11、D【解题分析】
直接利用向量垂直的充要条件列方程求解即可.【题目详解】因为,且,所以,化为,解得,故选D.【题目点拨】利用向量的位置关系求参数是命题的热点,主要命题方式有两个:(1)两向量平行,利用解答;(2)两向量垂直,利用解答.12、D【解题分析】
用,代入已知等式,得,可以变形为:,说明是等差数列,故可以求出等差数列的通项公式,最后求出的值.【题目详解】因为,所以,所以数列是以为公差的等差数列,,所以等差数列的通项公式为,故本题选D.【题目点拨】本题考查了公式的应用,考查了等差数列的判定义、以及等差数列的通项公式.二、填空题:本题共4小题,每小题5分,共20分。13、9【解题分析】
根据方差的线性变化公式计算:方差为,则的方差为.【题目详解】因为方差为,则的方差为,【题目点拨】本题考查方差的线性变化,难度较易.如果已知方差为,则的方差为,这可用于简便计算方差.14、②④【解题分析】试题解析::由题意可知A1,A2,AP(B|A3=P(A1)P(B|A1考点:相互独立事件,条件概率.【方法点晴】本题主要考查了相互独立事件,条件概率的求法等,解题的关键是理解题设中的各个事件,且熟练掌握相互独立事件的概率公式,本题较为复杂,正确理解事件的内涵是解题的突破点.解答本题的关键是在理解题意的基础上判断出A1,A2,A3是两两互斥的事件,根据条件概率公式得到P(B|A115、【解题分析】
设三边按递增顺序排列为,其中.则,即.解得.由q≥1知q的取值范围是1≤q<.设三边按递减顺序排列为,其中.则,即.解得.综上所述,.16、【解题分析】设,则,则.应填答案。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)-1或3(2)【解题分析】
(1)由绝对值不等式得,于是令可得答案;(2)先计算,再分和两种情况可得到答案.【题目详解】(1)由绝对值不等式得令,得或解得或解得不存在,故实数的值为-1或3(2)由于,则,当时,由得,当时,由得,此种情况不存在,综上可得:的取值范围为【题目点拨】本题主要考查绝对值不等式的相关计算,意在考查学生的转化能力,分析能力,对学生的分类讨论的能力要求较高,难度较大.18、(Ⅰ)直线的普通方程,曲线的直角坐标方程为;(Ⅱ).【解题分析】
(Ⅰ)由可得曲线的直角坐标方程为;用消参法消去参数,得直线的普通方程.(Ⅱ)将直线的参数方程代入曲线的直角坐标方程中,由直线的参数方程中的参数几何意义求解.【题目详解】(Ⅰ)由(为参数),消去参数,得直线的普通方程.由,得曲线的直角坐标方程为.(Ⅱ)将直线的参数方程为(为参数),代入,得.则,.∴,.所以,的值为,定点到,两点的距离之积为.【题目点拨】本题考查了简单曲线的极坐标方程,参数方程转化为普通方程,直线的参数方程.19、(1)=5,=10(2)见解析;(3)最小值是4035【解题分析】
(1)根据题意进行元素相加即可得出和的值;(2)因为共有项,所以.由集合,任取,由此能出的值;(3)不妨设,可得,故中至少有4035个不同的数,即.由此能出的最小值.【题目详解】(1)由2+4=6,2+6=8,2+8=10,4+6=10,4+8=12,6+8=14,得=5,由1+2=3,1+4=5,1+8=9,1+16=17,2+4=6,2+8=10,2+16=18,4+8=12,4+16=20,8+16=24,得=10.(2)证明:因为共有项,所以.又集合,不妨设,m=1,2,…,n.,当时,不妨设,则,即,当时,,因此,当且仅当时,.即所有的值两两不同,因此.(3)不妨设,可得,故中至少有4035个不同的数,即.事实上,设成等差数列,考虑,根据等差数列的性质,当时,;当时,;因此每个和等于中的一个,或者等于中的一个.所以最小值是4035。【题目点拨】本题考查,,,的最小值的求法,是中档题,解题时要认真审题,注意集合性质、分类讨论思想的合理运用.20、(1);(2)见解析【解题分析】
(1)利用分数统计表求得和;又,根据正态分布曲线可求得结果;(2)计算出从该地区所有党员中随机抽取人,抽得的人得分不低于分的概率,可知服从于二项分布,利用二项分布概率公式求解出每个可能的取值对应的概率,从而得到分布列;再利用二项分布数学期望计算公式求得期望.【题目详解】(1)由题意得:(2)从该地区所有党员中随机抽取人,抽得的人得分不低于分的概率为:由题意得,的可能取值为,且;;;;的分布列为:【题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业微信合作合同标准文本
- 共同签订项目合同标准文本
- 仓库拆除合同样本
- 中学教师劳务合同样本
- 会所转让合同样本
- 住宅改造合同样本
- 关于餐饮服务员合同样本
- 住建委物业合同标准文本
- 健康管理合同样本
- 入伙人合同标准文本
- 2025年医保政策法规考试题库及答案试卷(宣传解读)
- 兽医屠宰卫生人员考试题库及答案(415题)
- 心肺复苏术课件2024新版
- TCECA-G 0310-2024 离网制氢灵活消纳与柔性化工系统开发规范
- 2022年袋鼠数学竞赛真题一二年级组含答案
- 人民版四年级下册劳动教案全册2024
- 医院安全生产大检查自查记录文本表
- 卡通风区三好学生竞选演讲ppt模板
- 大米企业的记录表单(共30页)
- CNG卸气站操作规程
- 农民工工资表(模板)
评论
0/150
提交评论