2024届江苏省南通市如东高级中学数学高二下期末达标测试试题含解析_第1页
2024届江苏省南通市如东高级中学数学高二下期末达标测试试题含解析_第2页
2024届江苏省南通市如东高级中学数学高二下期末达标测试试题含解析_第3页
2024届江苏省南通市如东高级中学数学高二下期末达标测试试题含解析_第4页
2024届江苏省南通市如东高级中学数学高二下期末达标测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省南通市如东高级中学数学高二下期末达标测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.是虚数单位,则的虚部是()A.-2 B.-1 C. D.2.已知,设的展开式的各项系数之和为,二项式系数之和为,若,则展开式中的系数为()A.-250 B.250 C.-500 D.5003.设关于的不等式组表示的平面区域内存在点满足,则的取值范围是()A. B. C. D.4.如图所示,在边长为1的正方形OABC中任取一点P,则点P恰好取自阴影部分的概率为A. B. C. D.5.用数学归纳法证明:,第二步证明由到时,左边应加()A. B. C. D.6.若,则实数的值为()A.1 B.-2 C.2 D.-2或17.若=(4,2,3)是直线l的方向向量,=(-1,3,0)是平面α的法向量,则直线l与平面α的位置关系是A.垂直 B.平行C.直线l在平面α内 D.相交但不垂直8.计算的值是()A.72 B.102 C.5070 D.51009.若是离散型随机变量,,,又已知,,则的值为()A. B. C.3 D.110.已知,,则()A. B. C. D.11.如下图,在同一直角坐标系中表示直线y=ax与y=x+a,正确的是()A. B. C. D.12.已知函数是奇函数,则曲线在点处的切线方程是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.超速行驶已成为马路上最大杀手之一,已知某路段属于限速路段,规定通过该路段的汽车时速不超过60,否则视为违规.某天,有1000辆汽车经过了该路段,经过雷达测速得到这些汽车运行时速的频率分布直方图如图,则违规的汽车大约为___________.14.下图所示的算法流程图中,输出的表达式为__________.15.的展开式中的常数项为______。16.设函数,已知,则_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数.(1)求的单调区间;(2)若对任意的都有恒成立,求实数的取值范围.18.(12分)近日,某地普降暴雨,当地一大型提坝发生了渗水现象,当发现时已有的坝面渗水,经测算,坝而每平方米发生渗水现象的直接经济损失约为元,且渗水面积以每天的速度扩散.当地有关部门在发现的同时立即组织人员抢修渗水坝面,假定每位抢修人员平均每天可抢修渗水面积,该部门需支出服装补贴费为每人元,劳务费及耗材费为每人每天元.若安排名人员参与抢修,需要天完成抢修工作.写出关于的函数关系式;应安排多少名人员参与抢修,才能使总损失最小.(总损失=因渗水造成的直接损失+部门的各项支出费用)19.(12分)已知椭圆:的离心率为,直线被圆截得的弦长为.(1)求椭圆的方程;(2)过点的直线交椭圆于,两点,在轴上是否存在定点,使得为定值?若存在,求出点的坐标和的值;若不存在,请说明理由.20.(12分)已知的展开式中第五项的系数与第三项的系数的比是.(Ⅰ)求展开式中各项二项式系数的和;(Ⅱ)求展开式中中间项.21.(12分)为了让观赏游玩更便捷舒适,常州恐龙园推出了代步工具租用服务.已知有脚踏自行车与电动自行车两种车型,采用分段计费的方式租用.型车每分钟收费元(不足分钟的部分按分钟计算),型车每分钟收费元(不足分钟的部分按分钟计算),现有甲乙丙丁四人,分别相互独立地到租车点租车骑行(各租一车一次),设甲乙丙丁不超过分钟还车的概率分别为,并且四个人每人租车都不会超过分钟,甲乙丙均租用型车,丁租用型车.(1)求甲乙丙丁四人所付的费用之和为25元的概率;(2)求甲乙丙三人所付的费用之和等于丁所付的费用的概率;(3)设甲乙丙丁四人所付费用之和为随机变量,求的概率分布和数学期望.22.(10分)设,函数.(1)若,求曲线在处的切线方程;(2)求函数单调区间(3)若有两个零点,求证:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】

根据复数的除法运算把复数化为代数形式后可得其虚部.【题目详解】由题意得,所以复数的虚部是.故选B.【题目点拨】本题考查复数的运算和复数的基本概念,解答本题时容易出现的错误是认为复数的虚部为,对此要强化对基本概念的理解和掌握,属于基础题.2、A【解题分析】

分别计算各项系数之和为,二项式系数之和为,代入等式得到,再计算的系数.【题目详解】的展开式取得到二项式系数之和为取值为-250故答案选A【题目点拨】本题考查了二项式定理,计算出的值是解题的关键.3、D【解题分析】

由约束条件,作出可行域如上图所示阴影部分,要使可行域存在,必有,可行域包括上的点,只要边界点在直线的上方,且在直线的下方,故有,解得,选D.点睛:平面区域的最值问题是线性规划的一类重要题型,在解答本题时,关键是画好可行域,分析目标函数的几何意义,然后利用数形结合的思想,找出点的坐标,即可求出答案.4、C【解题分析】试题分析:由三角形面积为,,所以阴影部分面积为,所求概率为考点:定积分及几何概型概率5、D【解题分析】

当成立,当时,写出对应的关系式,观察计算即可得答案.【题目详解】在第二步证明时,假设时成立,即左侧,则成立时,左侧,左边增加的项数是,故选:D.【题目点拨】本题考查数学归纳法,考查到成立时左边项数的变化情况,考查理解与应用的能力,属于中档题.6、A【解题分析】分析:据积分的定义计算即可.详解:解得或(舍).故选A点睛:本题考查的知识点是定积分,根据已知确定原函数是解答的关键.7、D【解题分析】

判断直线的方向向量与平面的法向量的关系,从而得直线与平面的位置关系.【题目详解】显然与不平行,因此直线与平面不垂直,又,即与不垂直,从而直线与平面不平行,故直线与平面相交但不垂直.故选D.【题目点拨】本题考查用向量法判断直线与平面的位置关系,方法是由直线的方向向量与平面的法向量的关系判断,利用向量的共线定理和数量积运算判断直线的方向向量与平面的法向量是否平行和垂直,然后可得出直线与平面的位置关系.8、B【解题分析】

根据组合数和排列数计算公式,计算出表达式的值.【题目详解】依题意,原式,故选B.【题目点拨】本小题主要考查组合数和排列数的计算,属于基础题.9、D【解题分析】分析:由期望公式和方差公式列出的关系式,然后变形求解.详解:∵,∴随机变量的值只能为,∴,解得或,∴.故选D.点睛:本题考查离散型随机变量的期望与方差,解题关键是确定随机变量只能取两个值,从而再根据其期望与方差公式列出方程组,以便求解.10、C【解题分析】

将两边同时平方,利用商数关系将正弦和余弦化为正切,通过解方程求出,再利用二倍角的正切公式即可求出.【题目详解】再同时除以,整理得故或,代入,得.故选C.【题目点拨】本题主要考查了三角函数的化简和求值,考查了二倍角的正切公式以及平方关系,商数关系,属于基础题.11、A【解题分析】

由题意逐一考查所给的函数图像是否符合题意即可.【题目详解】逐一考查所给的函数图像:对于选项A,过坐标原点,则,直线在轴的截距应该小于零,题中图像符合题意;对于选项C,过坐标原点,则,直线在轴的截距应该大于零,题中图像不合题意;过坐标原点,直线的倾斜角为锐角,题中BD选项中图像不合题意;本题选择A选项.【题目点拨】本题主要考查分类讨论的数学思想,一次函数的性质等知识,意在考查学生的转化能力和计算求解能力.12、B【解题分析】

根据奇函数的定义或性质求出,然后可求出导函数,得切线斜率,从而得切线方程【题目详解】∵是奇函数,∴,∴,,是奇函数,,,,切线方程为,即.故选B.【题目点拨】本题考查导数的几何意义,考查函数的奇偶性,本题难度一般.二、填空题:本题共4小题,每小题5分,共20分。13、800【解题分析】

先通过频率分布直方图,得出速度大于对应矩形的面积和,再乘以可得出结果.【题目详解】由图象可知,速度大于的汽车的频率为,因此,违规的汽车数为,故答案为:.【题目点拨】本题考查频率分布直方图的应用,计算频率时要找出符合条件的矩形的面积之和,考查计算能力,属于基础题.14、【解题分析】

根据流程图知当,满足条件,执行循环体,,依此类推,当,不满足条件,退出循环体,从而得到结论.【题目详解】,满足条件,执行循环体,,满足条件,执行循环体,,满足条件,执行循环体,…依此类推,满足条件,执行循环体,,,不满足条件,退出循环体,输出,故答案为.【题目点拨】本题主要考查了循环结构应用问题,此循环是先判断后循环,属于中档题.15、240【解题分析】

根据二项式展开式通项公式确定常数项对应项数,再代入得结果【题目详解】,令得,,所以的展开式中的常数项为.【题目点拨】本题考查求二项式展开式中常数项,考查基本分析求解能力,属基础题.16、【解题分析】

对分离常数后,通过对比和的表达式,求得的值.【题目详解】依题意,,.【题目点拨】本小题主要考查函数求值,考查运算求解能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)的增区间为;的减区间为,(2)【解题分析】

(1)求导,根据导数的正负判断函数的单调区间.(2)对任意的都有恒成立转化为:求得答案.【题目详解】(1)的定义域为.,当时,,单调递增;当时,或,单调递减;所以的增区间为;的减区间为,.(2)由(1)知在单调递减,单调递增;知的最小值为,又,,,所以在上的值域为.所以实数的取值范围为.【题目点拨】本题考查了函数的单调性,恒成立问题,将恒成立问题转化为函数的最值问题是解题的关键.18、(1)(2)应安排名民工参与抢修,才能使总损失最小【解题分析】

(1)由题意得要抢修完成必须使得抢修的面积等于渗水的面积,即可得,所以;(2)损失包=渗水直接经济损失+抢修服装补贴费+劳务费耗材费,即可得到函数解析式,再利用基本不等式,即可得到结果.【题目详解】由题意,可得,所以.设总损失为元,则当且仅当,即时,等号成立,所以应安排名民工参与抢修,才能使总损失最小.【题目点拨】本题主要考查了函数的实际应用问题,以及基本不等式求最值的应用,其中解答中认真审题是关键,以及合理运用函数与不等式方程思想的有机结合,及基本不等式的应用是解答的关键,属于中档题,着重考查了分析问题和解答问题的能力.19、(1);(2),.【解题分析】

(1)由椭圆的离心率为,求得,再由圆的性质和圆的弦长公式,求得,进而可求解椭圆的标准方程;(2)设的方程:,联立方程组,利用根与系数的关系,求得,再利用向量的数量积的运算和代数式的性质,即可得到结论.【题目详解】(1)∵椭圆的离心率为,∴,∵圆的圆心到直线的距离为,∴直线被圆截得的弦长为.解得,故,∴椭圆的方程为.(2)设,,,当直线与轴不重合时,设的方程:.由得,,∴,,,当,即时,的值与无关,此时.当直线与轴重合且时,.∴存在点,使得为定值.【题目点拨】本题主要考查椭圆的标准方程的求解、及直线与圆锥曲线的位置关系的应用问题,解答此类题目,通常联立直线方程与椭圆(圆锥曲线)方程的方程组,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.20、(Ⅰ)64;(Ⅱ).【解题分析】

(Ⅰ)根据展开式中第五项的系数与第三项的系数的比是求出的值,然后可求各项二项式系数的和;(Ⅱ)根据的值确定中间项,利用通项公式可求.【题目详解】解:由题意知,展开式的通项为:,且,则第五项的系数为,第三项的系数为,则有,化简,得,解得,展开式中各项二项式系数的和;由(1)知,展开式共有7项,中间项为第4项,令,得.【题目点拨】本题主要考查二项展开式的系数及特定项求解,通项公式是求解这类问题的钥匙,侧重考查数学运算的核心素养.21、(1);(2);(3).【解题分析】

(1)“甲乙丙丁四人所付的费用之和为25元”,即4人均不超过30分钟。(2)即丁付20元,甲乙丙三人中有且只有一人付10,其余2人付5,分3种情况。用相互独立事件同时发生概率公式与互斥事件的和事件概率公式可求解。(3)根据分类可知随机变量的所有取值为25,30,35,40,45,50,求出概率及期望。【题目详解】(1)记“甲乙丙丁四人所付的费用之和为25元”为事件,即4人均不超过30分钟,则.答:求甲乙丙丁四人所付的费用之和为25元的概率是(2)由题意,甲乙丙丁在分钟以上且不超过分钟还车的概率分别为,设“甲乙丙三人所付费用之和等于丁所付费用”为事件,则答:甲乙丙三人所付的费用之和等于丁所付的费用的概率是.(3)①若“4人均不超过30分钟”此时随机变量的值为25,即为事件,由(1)所以.②记“4人中仅有一人超过30分钟”为事件,事件又分成两种情况“超过30分钟的这一人是甲乙丙中的一个”和“超过30分钟的这一人是丁”,分别将上述两种情况记为事件和.i.事件对应的的值为30,此时;ii.事件对应的的值为35,此时.③记“4人中仅有两人超过30分钟”为事件,事件又分成两种情况“超过30分钟的两人是甲乙丙中的两个”和“超过30分钟的两人是甲乙丙中的一个和丁”,分别将上述两种情况记为事件和.i.事件对应的的值为35,此时;i.事件对应的的值为40,此时④记“4人中仅有三人超过30分钟”为事件,事件又分成两种情况“超过30分钟的三人是甲乙丙”和“超过30分钟的三人是甲乙丙中的两个和丁”,分别将上述两种情况记为事件和.i.事件对应的的值为40,此时;i.事件对应的的值为45,此时.⑤记“4人均超过30分钟”为事件,则随机变量的值为50,此时;综上:随机变量的所有取值为25,30,35,40,45,50,且;;;;;;所以甲乙丙丁四人所付费

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论