




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
西宁市第四中学2024届高二数学第二学期期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某电子管正品率为,次品率为,现对该批电子管进行测试,那么在五次测试中恰有三次测到正品的概率是()A. B. C. D.2.设是虚数单位,复数为实数,则实数的值为()A.1 B.2 C. D.3.在各项都为正数的等差数列{an}中,若a1+a2+…+a10=30,则a5•a6的最大值等于()A.3B.6C.9D.364.设,则()A. B.10 C. D.1005.用四个数字1,2,3,4能写成()个没有重复数字的两位数.A.6 B.12 C.16 D.206.已知,则的值是A. B. C. D.7.一个几何体的三视图如图所示,正视图、侧视图和俯视图都是由一个边长为的正方形及正方形内一段圆弧组成,则这个几何体的表面积是()A. B. C. D.8.双曲线x2a2A.y=±2x B.y=±3x9.设,为的展开式的第一项(为自然对数的底数),,若任取,则满足的概率是()A. B. C. D.10.设定义在上的函数的导函数为,若,,则不等式(其中为自然对数的底数)的解集为()A. B.C. D.11.若函数,则()A.0 B.-1 C. D.112.已知函数(其中为自然对数的底数),则不等式的解集为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.=______.14.设向量=(1,0),=(−1,m),若,则m=_________.15.若向量与平行.则__.16.已知、的取值如表所示:01342.24.34.86.7从散点图分析,与线性相关,且,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)用数学归纳法证明:.18.(12分)保险公司统计的资料表明:居民住宅距最近消防站的距离(单位:千米)和火灾所造成的损失数额(单位:千元)有如下的统计资料:距消防站的距离(千米)火灾损失数额(千元)(1)请用相关系数(精确到)说明与之间具有线性相关关系;(2)求关于的线性回归方程(精确到);(3)若发生火灾的某居民区距最近的消防站千米,请评估一下火灾损失(精确到).参考数据:参考公式:回归直线方程为,其中19.(12分)设.(1)当时,,求a的取值范围;(2)若对任意,恒成立,求实数a的最小值.20.(12分)设函数.(1)当时,求函数的零点个数;(2)若,使得,求实数m的取值范围.21.(12分)已知公差不为的等差数列的前项和,,,成等差数列,且,,成等比数列.(1)求数列的通项公式;(2)若,,成等比数列,求及此等比数列的公比.22.(10分)设{an}是等差数列,a1=–10,且a2+10,a3+8,a4+6成等比数列.(Ⅰ)求{an}的通项公式;(Ⅱ)记{an}的前n项和为Sn,求Sn的最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
根据二项分布独立重复试验的概率求出所求事件的概率。【题目详解】由题意可知,五次测试中恰有三次测到正品,则有两次测到次品,根据独立重复试验的概率公式可知,所求事件的概率为,故选:D。【题目点拨】本题考查独立重复试验概率的计算,主要考查学生对于事件基本属性的判断以及对公式的理解,考查运算求解能力,属于基础题。2、C【解题分析】
由复数代数形式的乘除运算化简,再由虚部为0可得答案.【题目详解】解:,复数为实数,可得,,故选:C.【题目点拨】本题主要考查复数代数形式的乘除运算法则,属于基础题,注意运算准确.3、C【解题分析】试题分析:由题设,所以,又因为等差数列各项都为正数,所以,当且仅当时等号成立,所以a5·a6的最大值等于9,故选C.考点:1、等差数列;2、基本不等式.4、B【解题分析】
利用复数的除法运算化简为的形式,然后求得的表达式,进而求得.【题目详解】,,.故选B.【题目点拨】本小题主要考查复数的除法运算,考查复数的平方和模的运算,属于基础题.5、B【解题分析】
根据题意,由排列数公式计算即可得答案.【题目详解】根据题意,属于排列问题,则一共有种不同的取法.即共有12个没有重复数字的两位数.故选B.【题目点拨】本题考查排列数公式的应用,注意区分排列、组合、放回式抽取和不放回抽取的不同.6、D【解题分析】,,又,故选D.7、C【解题分析】
画出直观图,由球的表面积公式求解即可【题目详解】这个几何体的直观图如图所示,它是由一个正方体中挖掉个球而形成的,所以它的表面积为.故选:C【题目点拨】本题考查三视图以及几何体的表面积的计算,考查空间想象能力和运算求解能力.8、A【解题分析】分析:根据离心率得a,c关系,进而得a,b关系,再根据双曲线方程求渐近线方程,得结果.详解:∵e=因为渐近线方程为y=±bax点睛:已知双曲线方程x2a29、C【解题分析】由题意得,,则,即,,如图所示,作曲线,交直线于点,,则满足事件的实验区域为曲边形,其面积为,所以所求概率为,故选C.10、A【解题分析】
构造函数,则可判断,故是上的增函数,结合即可得出答案.【题目详解】解:设,则,∵,,∴,∴是上的增函数,又,∴的解集为,即不等式的解集为.故选A.【题目点拨】本题考查导数与函数单调性的关系,构造函数是解题的关键.11、B【解题分析】
根据分段函数的解析式代入自变量即可求出函数值.【题目详解】因为,所以,,因为,所以,故,故选B.【题目点拨】本题主要考查了分段函数,属于中档题.12、D【解题分析】
求导得到,函数单调递减,故,解得答案.【题目详解】,则恒成立,故函数单调递减,,故,解得或.故选:.【题目点拨】本题考查了根据导数确定函数单调性,根据单调性解不等式,意在考查学生对于函数性质的灵活运用.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
试题分析:.考点:对数的运算.14、-1.【解题分析】
根据坐标表示出,再根据,得坐标关系,解方程即可.【题目详解】,,由得:,,即.【题目点拨】此题考查向量的运算,在解决向量基础题时,常常用到以下:设,则①;②.15、【解题分析】
由题意利用两个向量共线的性质,两个向量坐标形式的运算法则,求得的值.【题目详解】由题意,向量与平行,所以,解得.故答案为.【题目点拨】本题主要考查了两个向量共线的性质,两个向量坐标形式的运算,着重考查了推理与计算能力,属于基础题.16、【解题分析】
根据数据表求解出,代入回归直线,求得的值.【题目详解】根据表中数据得:,又由回归方程知回归方程的斜率为截距本题正确结果:【题目点拨】本题考查利用回归直线求实际数据,关键在于明确回归直线恒过,从而可构造出关于的方程.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、详见解析【解题分析】
用数学归纳法进行证明,先证明当时,等式成立再假设当时等式成立,进而证明当时,等式也成立.【题目详解】当时,左边右边,等式成立.假设当时等式成立,即当时,左边═2当时,等式也成立.综合,等式对所有正整数都成立.【题目点拨】数学归纳法常常用来证明一个与自然数集相关的性质,其步骤为:设是关于自然数的命题,(1)奠基在时成立;(2)归纳在为任意自然数成立的假设下可以推出成立,则对一切自然数都成立.18、(1)见解析(2)(3)火灾损失大约为千元.【解题分析】分析:⑴利用相关系数计算公式,即可求得结果⑵由题中数据计算出,然后计算出回归方程的系数,,即可得回归方程⑶把代入即可评估一下火灾的损失详解:(1)所以与之间具有很强的线性相关关系;(2),∴与的线性回归方程为(3)当时,,所以火灾损失大约为千元.点睛:本题是一道考查线性回归方程的题目,掌握求解线性回归方程的方法及其计算公式是解答本题的关键.19、(1),(2)的最小值为【解题分析】试题分析:(1)的取值范围是;(2),当且仅当时取等号的最小值为.试题解析:(1),即依题意:由此得a的取值范围是(2)当且仅当时取等号解不等式得.故实数a的最小值为.考点:不等式选讲.20、(1)分别在区间上各存在一个零点,函数存在两个零点.(2)【解题分析】
(1)求出的导数并判断其单调性,再根据零点存在定理取几个特殊值判断出零点的个数。(2)假设对任意恒成立,转化成对任意恒成立.令,则.讨论其单调性。【题目详解】(1),即,则,令解得.当在上单调递减;当在上单调递增,所以当时,.因为,所以.又,,所以,,所以分别在区间上各存在一个零点,函数存在两个零点.(2)假设对任意恒成立,即对任意恒成立.令,则.①当,即时,且不恒为0,所以函数在区间上单调递增.又,所以对任意恒成立.故不符合题意;②当时,令,得;令,得.所以函数在区间上单调递减,在区间上单调递增,所以,即当时,存在,使,即.故符合题意.综上可知,实数的取值范围是.【题目点拨】本题主要考查了根据导函数判断函数的单调性以及零点存在定理,属于中等题。21、(1);(2),公比.【解题分析】试题分析:(1)由题意得到关于首项、公差的方程,解方程可得,则数列的通项公式为;(2)由(1)知,则,,结合等比数列的性质可得,公比.试题解析:(1)设数列的公差为由题意可知,整理得,即,所以;(2)由(1)知,∴,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 带学徒合同协议书怎么写
- 2025合同能源管理项目进展报告
- 党建公园工程合同协议书
- 还建房房合同协议书
- 酒店如何签署协议书合同
- 全款买房子合同协议书
- 2025济南购房合同模板
- 2025瑞泰养老金保险合同条款 合同范本
- 终止共货合同协议书
- 怎样写无效合同协议书
- 极端天气条件下排土场边坡土壤侵蚀与植被覆盖关系研究
- 玉雕工艺上课课件
- 九年级中考语文试题八套(练习版)
- 浙江明体新材料科技有限公司年产10000吨聚醚多元醇弹性体建设项目环评报告
- 动脉血气标本采集并发症预防及处理课件
- 机驾长习题+答案
- 小学生入队的试题及答案
- 太钢产品结构优化升级炼钢技术改造工程环境影响报告书
- 短文选词填空15篇(武汉中考真题+中考模拟)(解析版)
- 中考书法三套试题及答案
- 电商家具用户体验研究-深度研究
评论
0/150
提交评论