




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新疆维吾尔自治区库尔勒市新疆兵团第二师华山中学2024届数学高二第二学期期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.集合,则()A. B. C. D.2.若展开式中只有第四项的系数最大,则展开式中有理项的项数为()A. B. C. D.3.将个不同的小球放入个盒子中,则不同放法种数有()A. B. C. D.4.五个人站成一排,其中甲乙相邻的站法有()A.18种 B.24种 C.48种 D.36种5.已知非零向量满足,且,则与的夹角为A. B. C. D.6.若样本数据的均值与方差分别为和,则数据的均值与方差分别为()A., B. C. D.7.设i是虚数单位,则复数i3A.-i B.i C.1 D.-18.设实数,则下列不等式一定正确的是()A. B.C. D.9.把边长为的正方形沿对角线折起,使得平面⊥平面,形成三棱锥的正视图与俯视图如图所示,则侧视图的面积为()A. B.C. D.10.从中不放回地依次取2个数,事件“第一次取到的数可以被3整除”,“第二次取到的数可以被3整除”,则()A. B. C. D.11.现将甲、乙、丙、丁四个人安排到座位号分别是的四个座位上,他们分别有以下要求,甲:我不坐座位号为和的座位;乙:我不坐座位号为和的座位;丙:我的要求和乙一样;丁:如果乙不坐座位号为的座位,我就不坐座位号为的座位.那么坐在座位号为的座位上的是()A.甲 B.乙 C.丙 D.丁12.从装有除颜色外完全相同的个白球和个黑球的布袋中随机摸取一球,有放回地摸取次,设摸得黑球的个数为,已知,则等于()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,则________.14.的展开式中的系数是.(用数字填写答案)15.某单位在名男职工和名女职工中,选取人参加一项活动,要求男女职工都有,则不同的选取方法总数为______.16.设实数满足约束条件,则目标函数的最大值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某校倡导为特困学生募捐,要求在自动购水机处每购买一箱矿泉水,便自觉向捐款箱中至少投入一元钱.现统计了连续5天的售出矿泉水箱数和收入情况,列表如下:售出水量(单位:箱)76656收入(单位:元)165142148125150学校计划将捐款以奖学金的形式奖励给品学兼优的特困生,规定:特困生综合考核前20名,获一等奖学金500元;综合考核21~50名,获二等奖学金300元;综合考核50名以后的不获得奖学金.(1)若售出水量箱数与成线性相关,则某天售出9箱水时,预计收入为多少元?(2)甲乙两名学生获一等奖学金的概率均为,获二等奖学金的概率均为,不获得奖学金的概率均为,已知甲乙两名学生获得哪个等级的奖学金相互独立,求甲乙两名学生所获得奖学金之和的分布列及数学期望.附:回归直线方程,其中,.18.(12分)已知函数,(其中,为自然对数的底数).(1)讨论函数的单调性;(2)若分别是的极大值点和极小值点,且,求证:.19.(12分)已知椭圆:的离心率为,直线被圆截得的弦长为.(1)求椭圆的方程;(2)过点的直线交椭圆于,两点,在轴上是否存在定点,使得为定值?若存在,求出点的坐标和的值;若不存在,请说明理由.20.(12分)已知函数,其中为实数.(1)求函数的单调区间;(2)若函数有两个极值点,求证:.21.(12分)已知函数.(1)若,解不等式;(2)若恒成立,求实数的取值范围.22.(10分)已知定义在上的函数.(1)若的最大值为3,求实数的值;(2)若,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】,,故选B.2、D【解题分析】
根据最大项系数可得的值,结合二项定理展开式的通项,即可得有理项及有理项的个数.【题目详解】展开式中只有第四项的系数最大,所以,则展开式通项为,因为,所以当时为有理项,所以有理项共有4项,故选:D.【题目点拨】本题考查了二项定理展开式系数的性质,二项定理展开式通项的应用,有理项的求法,属于基础题.3、B【解题分析】试题分析:采用分步计数原理来求解:分3步,每一步4种方法,不同方法种数有种考点:分步计数原理4、C【解题分析】
将甲乙看作一个大的元素与其他元素进行排列,再乘即可得出结论.【题目详解】五个人站成一排,其中甲乙相邻,将甲乙看作一个大的元素与其他3人进行排列,再考虑甲乙顺序为,故共种站法.故选:C.【题目点拨】本题考查排列组合的应用,求排列组合常用的方法有:元素优先法、插空法、捆绑法、隔板法、间接法等,解决排列组合问题对学生的抽象思维能力和逻辑思维能力要求较高,本题属于简单题.5、B【解题分析】
本题主要考查利用平面向量数量积计算向量长度、夹角与垂直问题,渗透了转化与化归、数学计算等数学素养.先由得出向量的数量积与其模的关系,再利用向量夹角公式即可计算出向量夹角.【题目详解】因为,所以=0,所以,所以=,所以与的夹角为,故选B.【题目点拨】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为.6、D【解题分析】
直接根据均值和方差的定义求解即可.【题目详解】解:由题意有,,则,∴新数据的方差是,故选:D.【题目点拨】本题主要考查均值和方差的求法,属于基础题.7、C【解题分析】分析:由条件利用两个复数代数形式的除法运算,虚数单位i的幂运算性质,计算求得结果.详解:i3∴复数i3故选C点睛:本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.8、D【解题分析】
对4个选项分别进行判断,即可得出结论.【题目详解】解:由于a>b>0,,A错;当0<c<1时,ca<cb;当c=1时,ca=cb;当c>1时,ca>cb,故ca>cb不一定正确,B错;a>b>0,c>0,故ac﹣bc>0,C错.,D对;故选D.【题目点拨】本题考查不等式的性质,考查学生分析解决问题的能力,属于中档题.9、C【解题分析】取BD的中点E,连结CE,AE,∵平面ABD⊥平面CBD,∴CE⊥AE,∴三角形直角△CEA是三棱锥的侧视图,∵BD=,∴CE=AE=,∴△CEA的面积S=××=,故选C.10、C【解题分析】分析:先求,,再根据得结果.详解:因为,所以,选C.点睛:本题考查条件概率,考查基本求解能力.11、C【解题分析】
对甲分别坐座位号为3或4分类推理即可判断。【题目详解】当甲坐座位号为3时,因为乙不坐座位号为1和4的座位所以乙只能坐座位号为2,这时只剩下座位号为1和4又丙的要求和乙一样,矛盾,故甲不能坐座位号3.当甲坐座位号为4时,因为乙不坐座位号为1和4的座位,丙的要求和乙一样:所以丁只能坐座位号1,又如果乙不坐座位号为2的座位,丁就不坐座位号为1的座位.所以乙只能坐座位号2,这时只剩下座位号3给丙。所以坐在座位号为3的座位上的是丙.故选:C【题目点拨】本题主要考查了逻辑推理能力,考查了分类思想,属于中档题。12、C【解题分析】
根据二项分布的数学期望计算,即可得出答案。【题目详解】根据题意可得出,即所以故选C【题目点拨】本题考查二项分布,属于基础题。二、填空题:本题共4小题,每小题5分,共20分。13、3【解题分析】
根据题意,由对数的运算性质可得结合函数的解析式可得,进而计算可得答案.【题目详解】根据题意,则又由则故答案为:3【题目点拨】本题考查了指数、对数的运算和分段函数求值,考查了学生综合分析,数学运算的能力,属于基础题.14、【解题分析】由题意,二项式展开的通项,令,得,则的系数是.考点:1.二项式定理的展开式应用.15、.【解题分析】
在没有任何限制的条件下,减去全是女职工的选法种数可得出结果.【题目详解】由题意可知,全是女职工的选法种数为,因此,男女职工都有的选法种数为,故答案为.【题目点拨】本题考查组合问题,利用间接法求解能简化分类讨论,考查计算能力,属于中等题.16、2【解题分析】分析:由题意,作出约束条件所表示的平面区域,结合图象得到目标函数过点时,取得最大值,即可求解.详解:由题意,作出约束条件所表示的平面区域,如图所示,目标函数,即,当直线在上的截距最大值,此时取得最大值,结合图象可得,当直线过点时,目标函数取得最大值,由,解得,所以目标函数的最大值为.点睛:本题主要考查简单线性规划求解目标函数的最值问题.解决此类问题的关键是正确画出不等式组表示的可行域,将目标函数赋予几何意义;求目标函数的最值的一般步骤为:一画二移三求,其关键是准确作出可行域,理解目标函数的意义是解答的关键,着重考查了数形结合法思想的应用.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)206;(2)见解析【解题分析】试题分析:(1)先求出君子,代入公式求,,再求线性回归方程自变量为9的函数值,(2)先确定随机变量取法,在利用概率乘法求对应概率,列表可得分布列,根据数学期望公式求期望.试题解析:(1),经计算,所以线性回归方程为,当时,的估计值为206元;(2)的可能取值为0,300,500,600,800,1000;;;;;;;03005006008001000所以的数学期望.18、(1)见解析;(2)证明见解析【解题分析】
(1)讨论,和三种情况,分别计算得到答案.(2)根据题意知等价于,设,计算得到使,计算得到得到证明.【题目详解】(1)当时,,的单调递增区间是,单调递减区间是;时,,①时,由解得或;由解得,的单调递增区间是和,单调递减区间是②时,由解得;由解得或,的单调递增区间是,单调递减区间是和;综上所述:时,单调递增区间是,单调递减区间是;时,单调递增区间是和,单调递减区间是;时,单调递增区间是,单调递减区间是和;(2)由已知和(1)得,当时满足题意,此时,,令,则.令则恒成立,在上单调递增,使,即从而当时,单调递减,当时,单调递增,在上单调递减,,即,【题目点拨】本题考查了函数的单调性,利用导数证明不等式,将不等式等价于是解题的关键.19、(1);(2),.【解题分析】
(1)由椭圆的离心率为,求得,再由圆的性质和圆的弦长公式,求得,进而可求解椭圆的标准方程;(2)设的方程:,联立方程组,利用根与系数的关系,求得,再利用向量的数量积的运算和代数式的性质,即可得到结论.【题目详解】(1)∵椭圆的离心率为,∴,∵圆的圆心到直线的距离为,∴直线被圆截得的弦长为.解得,故,∴椭圆的方程为.(2)设,,,当直线与轴不重合时,设的方程:.由得,,∴,,,当,即时,的值与无关,此时.当直线与轴重合且时,.∴存在点,使得为定值.【题目点拨】本题主要考查椭圆的标准方程的求解、及直线与圆锥曲线的位置关系的应用问题,解答此类题目,通常联立直线方程与椭圆(圆锥曲线)方程的方程组,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.20、(1)见解析;(2)证明见解析【解题分析】
(1)计算导数,采用分类讨论的方法,,与,根据导数的符号判定原函数的单调性,可得结果.(2)根据(1)的结论,可得,然后构造新函数,通过导数研究新函数的单调性,并计算最值,然后与比较大小,可得结果.【题目详解】(1)函数的定义域为,①若,即时,则,此时的单调减区间为;②若,时,令的两根为,,,所以的单调减区间为,,单调减区间为.③当时,,,此时的单调增区间为,单调减区间为.(2)当时,函数有两个极值点,且,.则则要证,只需证.构造函数,则,在上单调递增,又,,且在定义域上不间断,由零点存在定理可知:在上唯一实根,且.则在上递减,上递增,所以的最小值为.因为,当,,则,所以恒成立.所以,所以,得证.【题目点拨】本题考查导数的综合应用,难点在于分类讨论思想的应用,同时掌握构造函数,化繁为简,考验分析能力以及极强的逻辑推理能力,综合性较强,属难题.21、(1)(2)【解题分析】分析:(1)当时,分类讨论可求解不等式;(2)若恒成立,即恒成立,利用绝对值三角不等式可求的最小值为,即,由此可求实数的取值范围详解:(1)当时,由得,则;当时,恒成立;当时,由得,则.综上,不等式的解集为(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 现代餐饮店铺转让合同含环保设施及节能技术
- 海外社交媒体跨境电商品牌合作推广协议
- 智能制造基地厂房股权转让合作协议
- 水上救援专用船租赁服务协议
- 高端制造基地厂房租赁代购及产业导入合同
- 场地及综合体大楼公共设施装修工程协议
- 2025茶叶销售代理合同全新版
- 2025合同范本物业管理服务合同 示例
- 2025合作合同书 共同经营协议
- 离散数学试题及答案文库
- 理论联系实际阐述文化在社会发展中具有什么样的作用?参考答案四
- GA/T 954-2011法庭科学工具痕迹中凹陷痕迹的检验规范
- GA/T 497-2016道路车辆智能监测记录系统通用技术条件
- 第六章恶意代码分析与防范培训课件
- 净化工程施工组织设计方案方案
- CNAS实验室评审不符合项整改报告
- PDCA降低I类切口感染发生率
- 行车日常维护保养点检记录表
- 幼儿园《开关门要小心》
- 多彩的黄土高原论文自然环境
- TwinCAT PLC 编程手册
评论
0/150
提交评论