2024届江苏省镇江市高二数学第二学期期末预测试题含解析_第1页
2024届江苏省镇江市高二数学第二学期期末预测试题含解析_第2页
2024届江苏省镇江市高二数学第二学期期末预测试题含解析_第3页
2024届江苏省镇江市高二数学第二学期期末预测试题含解析_第4页
2024届江苏省镇江市高二数学第二学期期末预测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省镇江市高二数学第二学期期末预测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设为中的三边长,且,则的取值范围是()A. B.C. D.2.已知复数,若是纯虚数,则实数等于()A.2 B.1 C.0或1 D.-13.复数的共轭复数在复平面内对应的点所在的象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.已知a=,b=,c=,则()A.a<b<c B.c<b<aC.c<a<b D.b<c<a5.已知椭圆,点在椭圆上且在第四象限,为左顶点,为上顶点,交轴于点,交轴于点,则面积的最大值为()A. B. C. D.6.在第二届乌镇互联网大会中,为了提高安保的级别同时又为了方便接待,现将其中的五个参会国的人员安排酒店住宿,这五个参会国要在、、三家酒店选择一家,且每家酒店至少有一个参会国入住,则这样的安排方法共有A.种 B.种C.种 D.种7.某教师要把语文、数学、外语、历史四个科目排到如下的课表中,如果相同科目既不同行也不同列,星期一的课表已经确定如下表,则其余三天课表的不同排法种数有(

)A.96B.36C.24D.128.已知函数是定义在上的奇函数,若对于任意的实数,都有,且当时,,则的值为()A.-1 B.-2 C.2 D.19.直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是A. B. C. D.10.如图,用5种不同的颜色把图中、、、四块区域分开,若相邻区域不能涂同一种颜色,则不同的涂法共有()A.200种 B.160种 C.240种 D.180种11.若复数(其中为虚数单位,)为纯虚数,则等于()A. B. C. D.12.设实数a=log23,b=A.a>b>c B.a>c>b C.b>a>c D.b>c>a二、填空题:本题共4小题,每小题5分,共20分。13.设函数,.若,且的最小值为-1,则实数的值为__________.14.已知某运动队有男运动员名,女运动员名,若现在选派人外出参加比赛,则选出的人中男运动员比女运动员人数多的概率是_________.15.若复数满足,则的最小值______.16.如果不等式的解集为,那么_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在锐角中,角的对边分别为,中线,满足.(1)求;(2)若,求周长的取值范围.18.(12分)已知函数.(1)当时,讨论函数的单调性;(2)当,时,对任意,都有成立,求实数的取值范围.19.(12分)已知函数在处取得极值.(1)求实数a的值;(2)若关于x的方程在区间上恰有两个不同的实数根,求实数b的取值范围.20.(12分)已知函数.(1)求函数的单调区间;(2)若恒成立,试确定实数的取值范围.21.(12分)某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式y=ax-3+10(1)求a的值;(2)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大,并求出最大利润.22.(10分)已知数列{an}的前n项和Sn满足:Sn=+-1,且an>0,n∈N*.(1)求a1,a2,a3,并猜想{an}的通项公式;(2)证明(1)中的猜想.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】

由,则,再根据三角形边长可以证得,再利用不等式和已知可得,进而得到,再利用导数求得函数的单调性,求得函数的最小值,即可求解.【题目详解】由题意,记,又由,则,又为△ABC的三边长,所以,所以,另一方面,由于,所以,又,所以,不妨设,且为的三边长,所以.令,则,当时,可得,从而,当且仅当时取等号.故选B.【题目点拨】本题主要考查了解三角形,综合了函数和不等式的综合应用,以及基本不等式和导数的应用,属于综合性较强的题,难度较大,着重考查了分析问题和解答问题的能力,属于难题.2、B【解题分析】分析:由复数是纯虚数,得实部等于0且虚部不等于0.求解即可得到答案.详解:复数是纯虚数,,解得.故选B.点睛:此题考查复数的概念,思路:纯虚数是实部为0.虚部不为0的复数.3、A【解题分析】

复数的共轭复数为,共轭复数在复平面内对应的点为.【题目详解】复数的共轭复数为,对应的点为,在第一象限.故选A.【题目点拨】本题考查共轭复数的概念,复数的几何意义.4、D【解题分析】

分别考查指数函数在R上单调性和幂函数在(0,+∞)上单调性即可得出.【题目详解】∵y=在R上为减函数,>,∴b<c.又∵y=在(0,+∞)上为增函数,>,∴a>c,∴b<c<a.故选:D【题目点拨】熟练掌握指数函数和幂函数的单调性是解题的关键.5、C【解题分析】

若设,其中,则,求出直线,的方程,从而可得,两点的坐标,表示的面积,设出点处的切线方程,与椭圆方程联立成方程组,消元后判别式等于零,求出点的坐标可得答案.【题目详解】解:由题意得,设,其中,则,所以直线为,直线为,可得,所以,所以,设处的切线方程为由,得,,解得,此时方程组的解为,即点时,面积取最大值故选:C【题目点拨】此题考查了椭圆的性质,三角形面积计算公式,考查了推理能力与计算能力,属于难题.6、D【解题分析】

根据题意,分2步进行分析:①把5个个参会国的人员分成三组,一种是按照1、1、3;另一种是1、2、2;由组合数公式可得分组的方法数目,②,将分好的三组对应三家酒店;由分步计数原理计算可得答案.【题目详解】根据题意,分2步进行分析:

①、五个参会国要在a、b、c三家酒店选择一家,且这三家至少有一个参会国入住,

∴可以把5个国家人分成三组,一种是按照1、1、3;另一种是1、2、2

当按照1、1、3来分时共有C53=10种分组方法;

当按照1、2、2来分时共有种分组方法;

则一共有种分组方法;

②、将分好的三组对应三家酒店,有种对应方法;

则安排方法共有种;

故选D.【题目点拨】本题考查排列组合的应用,涉及分类、分步计数原理的应用,对于复杂一点的计数问题,有时分类以后,每类方法并不都是一步完成的,必须在分类后又分步,综合利用两个原理解决.7、C【解题分析】

先安排第一节的课表种,再安排第二节的课表有2种,第三节的课表也有2种,最后一节只有1种安排方案,所以可求.【题目详解】先安排第一节的课表,除去语文均可以安排共有种;周二的第二节不和第一节相同,也不和周一的第二节相同,共有2种安排方案,第三节和第四节的顺序是确定的;周三的第二节也有2种安排方案,剩余位置的安排方案只有1种,根据计数原理可得种,故选C.【题目点拨】本题主要考查分步计数原理的应用,侧重考查逻辑推理的核心素养.8、A【解题分析】

利用函数的奇偶性以及函数的周期性转化求解即可.【题目详解】因为f(x)是奇函数,且周期为2,所以f(﹣2017)+f(2018)=﹣f(2017)+f(2018)=﹣f(1)+f(0).当x∈[0,2)时,f(x)=log2(x+1),所以f(﹣2017)+f(2018)=﹣1+0=﹣1.故选:A.【题目点拨】本题考查函数的奇偶性以及函数的周期性的应用,考查计算能力.9、B【解题分析】分析:求出A(﹣3,0),B(0,﹣3),|AB|=,设P(1+,),点P到直线x+y+2=0的距离:d=,∈,由此能求出△ABP面积的取值范围.详解:∵直线x+y+3=0分别与x轴,y轴交于A,B两点,∴令x=0,得y=﹣3,令y=0,得x=﹣3,∴A(﹣3,0),B(0,﹣3),|AB|=,∵点P在圆(x﹣1)2+y2=2上,∴设P(1+,),∴点P到直线x+y+3=0的距离:d=,∵sin∈[﹣1,1],∴d=,∴△ABP面积的最小值为△ABP面积的最大值为故答案为:B.点睛:(1)本题主要考查直线与圆的位置关系和三角形的面积,考查圆的参数方程和三角恒等变换,考查三角函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.(2)解答本题的关键是设点P(1+,),利用圆的参数方程设点大大地提高了解题效率.10、D【解题分析】

根据题意可知,要求出给四个区域涂色共有多少种方法,需要分步进行考虑;对区域A、B、C、D按顺序着色,推出其各有几种涂法,利用分步乘法计数原理,将各区域涂色的方法数相乘,所得结果即为答案.【题目详解】涂有5种涂法,有4种,有3种,因为可与同色,故有3种,∴由分步乘法计数原理知,不同涂法有种.故答案选D.【题目点拨】本题考查了排列组合中的涂色问题,处理区域涂色问题的基本方法为分步乘法计数原理.11、D【解题分析】

先利用复数的除法将复数表示为一般形式,结合题中条件求出的值,再利用复数求模公式求出.【题目详解】,由于复数为纯虚数,所以,,得,,因此,,故选D.【题目点拨】本题考查复数的除法、复数的概念以及复数求模,解决复数问题,要通过复数的四则运算将复数表示为一般形式,结合复数相关知识求解,考查计算能力,属于基础题.12、A【解题分析】分析:利用指数函数、对数函数的单调性及中间量比较大小.详解:∵a=log23>log22=1,0<b=1312<(1c=log132∴a>b>c.故选A.点睛:利用指数函数对数函数及幂函数的性质比较实数或式子的大小,一方面要比较两个实数或式子形式的异同,底数相同,考虑指数函数增减性,指数相同考虑幂函数的增减性,当都不相同时,考虑分析数或式子的大致范围,来进行比较大小,另一方面注意特殊值0,1的应用,有时候要借助其“桥梁”作用,来比较大小.二、填空题:本题共4小题,每小题5分,共20分。13、2【解题分析】分析:先表示函数,再利用导数求函数最小值,最后根据的最小值为-1得实数的值.详解:因为,设,则所以因为,所以当时,;当时,;即当时,.点睛:两函数关系问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式或方程,从而求出参数的取值范围或值.14、.【解题分析】

将所求事件分为两种情况:男女,男,这两个事件互斥,然后利用古典概型的概率公式和互斥事件的概率加法公式可求出所求事件的概率.【题目详解】事件“选出的人中男运动员比女运动员人数多”包含事件“男女”和事件“男”,由古典概型概率公式和互斥事件的概率加法公式可知,事件“选出的人中男运动员比女运动员人数多”的概率为,故答案为.【题目点拨】本题考查古典概型的概率公式和互斥事件的概率加法公式的应用,解题时要将所求事件进行分类讨论,结合相关公式进行计算,考查计算能力,属于中等题.15、【解题分析】

设复数,由可得,即.将转化为和到抛物线动点距离和,根据抛物线性质即可求得最小值.【题目详解】设复数即整理得:是以焦点为的抛物线.化简为:转化为和到抛物线动点距离和.如图.由过作垂线,交抛物线准线于点.交抛物线于点根据抛物线定义可知,,根据点到直线,垂线段最短,可得:的最小值为:.故答案为:.【题目点拨】本题考查与复数相关的点的轨迹问题,解本题的关键在于确定出复数对应的点的轨迹,利用数形结合思想求解,考查分析问题的和解决问题的能力.16、【解题分析】

根据一元二次不等式和一元二次方程的关系可知,和时方程的两个实数根,利用韦达定理求解.【题目详解】不等式的解集为的两个实数根是,,根据韦达定理可知,解得:,.故答案为:【题目点拨】本题考查一元二次方程和一元二次不等式的关系,意在考查计算能力,属于基础题型.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】

(1)利用,两边平方后,代入,利用余弦定理求得的值,进而求得.(2)利用正弦定理进行转化,结合三角函数值域的求法,求得周长的取值范围.【题目详解】(1)由于是三角形的中线,所以,两边平方并化简得,将代入上式得,故,所以.(2)由正弦定理得,而,所以的周长为,由于三角形是锐角三角形,所以,所以,所以,所以,也即三角形周长的取值范围是.【题目点拨】本小题主要考查向量运算,考查余弦定理、正弦定理解三角形,考查辅助角公式,考查三角函数值域的求法,属于中档题.18、(1)见解析;(2).【解题分析】

1通过讨论a的范围,求出函数的单调区间即可;2原问题等价于,成立,可得,可得,即,设,,可得在单调递增,且,即可得不等式的解集即可.【题目详解】1函数的定义域为.当时,,所以.当时,,所以函数在上单调递增.当时,令,解得:,当时,,所以函数在上单调递减;当时,,所以函数在上单调递增.综上所述,当,时,函数在上单调递增;当,时,函数在上单调递减,在上单调递增.2对任意,,有成立,,,成立,,时,.当时,,当时,,在单调递减,在单调递增,,,,设,,.在递增,,可得,,即,设,,在恒成立.在单调递增,且,不等式的解集为.实数b的取值范围为.【题目点拨】本题考查了导数的应用,利用导数研究函数的单调区间,恒成立问题,考查了转化思想、运算能力,属于压轴题.19、(1);(2).【解题分析】

(Ⅰ)函数,对其进行求导,在处取得极值,可得,求得值;

(Ⅱ)由知,得令则关于的方程在区间上恰有两个不同的实数根,转化为上恰有两个不同实数根,对对进行求导,从而求出的范围;【题目详解】(Ⅰ)时,取得极值,故解得.经检验符合题意.(Ⅱ)由知,得令则在上恰有两个不同的实数根,等价于上恰有两个不同实数根.当时,,于是上单调递增;当时,,于是在上单调递增;依题意有.【题目点拨】本题考查利用导数研究函数的极值及单调性以及方程的实数根问题,解题过程中用到了分类讨论的思想,分类讨论的思想也是高考的一个重要思想,要注意体会其在解题中的运用,属中档题.20、(1)函数的递增区间为,函数的递减区间为;(2)【解题分析】试题分析:(1)由已知得x>1,,对k分类讨论,由此利用导数性质能求出函数f(x)的单调区间.(2)由得,即求的最大值.试题解析:解:(1)函数的定义域为,,当时,,函数的递增区间为,当时,,当时,,当时,,所以函数的递增区间为,函数的递减区间为.(2)由得,令,则,当时,,当时,,所以的最大值为,故.点睛:导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立,转化为;(3)若恒成立,可转化为.21、(1)6(2)x=4,46【解题分析】

(1)由f(5)=13代入函数的解析式,解关于a的方程,可得a值;(2)商场每日销售该商品所获得的利润=每日的销售量×销售该商品的单利润,可得日销售量的利润函数为关于x的三次多项式函数,再用求导数的方法讨论函数的单调性,得出函数的极大值点,从而得出最大值对应的x值.【题目详解】解:(1)因为x=5时,y=13,所以a2+10=13,故(2)由(Ⅰ)可知,该商品每日的销售量y=所以商场每日销售该商品所获得的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论