版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广西桂林中学2024届高二数学第二学期期末复习检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.命题“,使”的否定是()A.,使 B.,使C.,使 D.,使2.一个几何体的三视图如图所示,其体积为()A. B. C. D.3.下列问题中的随机变量不服从两点分布的是()A.抛掷一枚骰子,所得点数为随机变量B.某射手射击一次,击中目标的次数为随机变量C.从装有5个红球,3个白球的袋中取1个球,令随机变量{1,取出白球;0,取出红球}D.某医生做一次手术,手术成功的次数为随机变量4.设,下列不等式中正确的是()①②③④A.①和② B.①和③ C.①和④ D.②和④5.如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,则该几何体的体积为()A. B. C. D.6.若函数,则下列结论正确的是()A.,在上是增函数 B.,在上是减函数C.,是偶函数 D.,是奇函数7.已知命题“,使得”是真命题,则实数的取值范围是()A. B. C. D.8.某三棱锥的三视图如图所示,则该三棱锥四个面的面积中最大的是A. B.3C. D.9.“所有9的倍数都是3的倍数.某数是9的倍数,故该数为3的倍数,”上述推理A.完全正确 B.推理形式不正确C.错误,因为大小前提不一致 D.错误,因为大前提错误10.在极坐标系中,圆ρ=-2sinθ的圆心的极坐标系是A. B. C.(1,0) D.(1,)11.设a=log20.3,b=10lg0.3,c=100.3,则A.a<b<c B.b<c<a C.c<a<b D.c<b<a12.某学校为解决教师的停车问题,在校内规划了一块场地,划出一排12个停车位置,今有8辆不同的车需要停放,若要求剩余的4个空车位连在一起,则不同的停车方法有()A.种 B.种 C.种 D.种二、填空题:本题共4小题,每小题5分,共20分。13.已知函数若关于的方程恰有4个不同的实数解,则的取值范围是_____.14.某中学开设A类选修课4门,B类选修课5门,C类选修课2门,每位同学从中共选4门课,若每类课程至少选一门,则不同的选法共有_______种.15.已知函数f(x)=12x-14sinx-3416.向量经过矩阵变换后的向量是________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)一个不透明的袋子中,放有大小相同的5个小球,其中3个黑球,2个白球.如果不放回的依次取出2个球.回答下列问题:(Ⅰ)第一次取出的是黑球的概率;(Ⅱ)第一次取出的是黑球,且第二次取出的是白球的概率;(Ⅲ)在第一次取出的是黑球的条件下,第二次取出的是白球的概率.18.(12分)已知函数.(1)若函数与相切于点,求的值;(2)若是函数图象的切线,求的最小值.19.(12分)在创建“全国文明卫生城市”过程中,某市“创城办”为了调查市民对创城工作的了解情况,进行了一次创城知识问卷调查(一位市民只能参加一次).通过随机抽样,得到参加问卷调查的人的得分(满分100分)统计结果如下表所示:组别频数(1)由频数分布表可以大致认为,此次问卷调查的得分服从正态分布,近似为这人得分的平均值(同一组中的数据用该组区间的中点值作代表),利用该正态分布,求(2)在(1)的条件下,“创城办”为此次参加问卷调查的市民制定如下奖励方案:①得分不低于的可以获赠次随机话费,得分低于的可以获赠次随机话费;②每次获赠的随机话费和对应的概率为:赠送话费的金额(单位:元)概率现有市民甲参加此次问卷调查,记(单位:元)为该市民参加问卷调查获赠的话费,求的分布列与均值.附:参考数据与公式若,则=0.9544,20.(12分)为了纪念国庆70周年,学校决定举办班级黑板报主题设计大赛,高二某班的同学将班级长米、宽米的黑板做如图所示的区域划分:取中点,连接,以为对称轴,过两点作一抛物线弧,在抛物线弧上取一点,作垂足为,作交于点.在四边形内设计主题,其余区域用于文字排版,设的长度为米.(1)求长度的表达式,并写出定义域;(2)设四边形面积为,求当为何值时,取最大值,最大为多少平方米?21.(12分)基于移动互联技术的共享单车被称为“新四大发明”之一,短时间内就风靡全国,带给人们新的出行体验,某共享单车运营公司的市场研究人员为了解公司的经营状况,对该公司最近六个月的市场占有率进行了统计,结果如表:月份月份代码x123456y111316152021请用相关系数说明能否用线性回归模型拟合y与月份代码x之间的关系,如果能,请计算出y关于x的线性回归方程,并预测该公司2018年12月的市场占有率如果不能,请说明理由.根据调研数据,公司决定再采购一批单车扩大市场,现有采购成本分别为1000元辆和800元辆的A,B两款车型,报废年限各不相同考虑公司的经济效益,该公司决定对两款单车进行科学模拟测试,得到两款单车使用寿命频数表如表:报废年限车型1年2年3年4年总计A10304020100测算,平均每辆单车每年可以为公司带来收入500元不考虑除采购成本以外的其他成本,假设每辆单车的使用寿命都是整数年,用频率估计每辆车使用寿命的概率,分别以这100辆单车所产生的平均利润作为决策依据,如果你是该公司的负责人,会选择釆购哪款车型?参考数据:,,参考公式:相关系数回归直线方程中的斜率和截距的最小二乘估计公式分别为:,.22.(10分)为丰富市民的文化生活,市政府计划在一块半径为200m,圆心角为的扇形地上建造市民广场,规划设计如图:内接梯形区域为运动休闲区,其中A,B分别在半径,上,C,D在圆弧上,;上,;区域为文化展区,长为,其余空地为绿化区域,且长不得超过200m.(1)试确定A,B的位置,使的周长最大?(2)当的周长最长时,设,试将运动休闲区的面积S表示为的函数,并求出S的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
根据含有一个量词的命题的否定,可直接得出结果.【题目详解】因为特称命题的否定为全称命题,所以命题“,使”的否定是“,使”.故选A【题目点拨】本题主要考查含有一个量词的命题的否定,只需改量词与结论即可,属于基础题型.2、C【解题分析】
由三视图还原原几何体,可知该几何体是直三棱柱剪去一个角,其中为等腰直角三角形,,再由棱锥体积剪去棱锥体积求解.【题目详解】解:由三视图还原原几何体如图,
该几何体是直三棱柱剪去一个角,其中为等腰直角三角形,,
∴该几何体的体积,
故选:C.【题目点拨】本题考查由三视图求体积,关键是由三视图还原几何体,是中档题.3、A【解题分析】
两点分布又叫分布,所有的实验结果有两个,,,满足定义,不满足.【题目详解】两点分布又叫分布,所有的实验结果有两个,,,满足定义,而,抛掷一枚骰子,所得点数为随机变量,则的所有可能的结果有6种,不是两点分布.故选:.【题目点拨】本题考查了两点分布的定义,意在考查学生对这些知识的理解掌握水平,属于基础题.4、C【解题分析】分析:利用绝对值三角不等式等逐一判断.详解:因为ab>0,所以a,b同号.对于①,由绝对值三角不等式得,所以①是正确的;对于②,当a,b同号时,,所以②是错误的;对于③,假设a=3,b=2,所以③是错误的;对于④,由绝对值三角不等式得,所以④是正确的.故答案为:C.点睛:(1)本题主要考查绝对值不等式,意在考查学生对该知道掌握水平和分析推理能力.(2)对于类似这样的题目,方法要灵活,有的可以举反例,有的可以直接证明判断.5、C【解题分析】分析:由题意,该几何体是一个正四棱柱切了四个角(小三棱锥),从而利用体积公式计算即可.详解:由题意,该几何体是一个正四棱柱切了四个角(小三棱锥),则.故选:C.点睛:(1)解决组合体问题关键是分清该几何体是由哪些简单的几何体组成的以及这些简单的几何体的组合情况;(2)由三视图求几何体的面积、体积,关键是由三视图还原几何体,同时还需掌握求体积的常用技巧如:割补法和等价转化法.6、C【解题分析】试题分析:因为,且函数定义域为令,则显然,当时,;当时,所以当时,在上是减函数,在上是增函数,所以选项A,B均不正确;因为当时,是偶函数,所以选项C正确.要使函数为奇函数,必有恒成立,即恒成立,这与函数的定义域相矛盾,所以选项D不正确.考点:1、导数在研究函数性质中的应用;2、函数的奇偶性.7、C【解题分析】
利用二次函数与二次不等式的关系,可得函数的判别式,从而得到.【题目详解】由题意知,二次函数的图象恒在轴上方,所以,解得:,故选C.【题目点拨】本题考查利用全称命题为真命题,求参数的取值范围,注意利用函数思想求解不等式.8、C【解题分析】作出三棱锥P−ABC的直观图如图所示,过A作AD⊥BC,垂足为D,连结PD.由三视图可知PA⊥平面ABC,BD=AD=1,CD=PA=2,∴.∴,.∴三棱锥P−ABC的四个面中,侧面PBC的面积最大.故选C.点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.9、A【解题分析】
根据三段论定义即可得到答案.【题目详解】根据题意,符合逻辑推理三段论,于是完全正确,故选A.【题目点拨】本题主要考查逻辑推理,难度不大.10、B【解题分析】
由题圆,则可化为直角坐标系下的方程,,,,圆心坐标为(0,-1),则极坐标为,故选B.考点:直角坐标与极坐标的互化.11、A【解题分析】
求出三个数值的范围,即可比较大小.【题目详解】,,,,,的大小关系是:.故选:A.【题目点拨】对数函数值大小的比较一般有三种方法:①单调性法,在同底的情况下直接得到大小关系,若不同底,先化为同底.②中间值过渡法,即寻找中间数联系要比较的两个数,一般是用“0”,“1”或其他特殊值进行“比较传递”.③图象法,根据图象观察得出大小关系.12、A【解题分析】根据题意,要求有4个空车位连在一起,则将4个空车位看成一个整体,将这个整体与8辆不同的车全排列,有种不同的排法,即有种不同的停车方法;故选A.点睛:(1)解排列组合问题要遵循两个原则:①按元素(或位置)的性质进行分类;②按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组.注意各种分组类型中,不同分组方法的求解.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
先求得的零点,由此判断出方程恰有2个不同的实数解,结合图像求得的取值范围.【题目详解】有两个零点,画出图像如下图所示,依题意恰有4个不同的实数解,则方程恰有2个不同的实数解,由图可知,故的取值范围为.故答案为:【题目点拨】本小题主要考查根据分段函数图像以及方程零点个数求参数的取值范围,考查数形结合的数学思想方法,属于基础题.14、160【解题分析】
每位同学共选4门课,每类课程至少选一门,则必有某类课程选2门,另外两类课程各选1门,对选2门的这类课程进行分类,可能是A类,可能是B类,可能是C类.【题目详解】(1)当选2门的为A类,N1(2)当选2门的为B类,N2(3)当选2门的为C类,N3∴选法共有N1【题目点拨】分类与分步计数原理,要确定好分类与分步的标准,本题对选2门课程的课程类进行分类,再对每一类情况分3步考虑.15、-【解题分析】解:函数f(x)=12因此f'(x0)=12-16、【解题分析】
根据即可求解。【题目详解】根据矩阵对向量的变换可得故答案为:【题目点拨】本题考查向量经矩阵变换后的向量求法,关键掌握住变换的运算法则。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)(Ⅲ)【解题分析】
(Ⅰ)黑球有3个,球的总数为5个,代入概率公式即可;(Ⅱ)利用独立事件的概率公式直接求解即可;(Ⅲ)直接用条件概率公式求解.【题目详解】依题意,设事件A表示“第一次取出的是黑球”,设事件B表示“第二次取出的是白球”(Ⅰ)黑球有3个,球的总数为5个,所以P(A);(Ⅱ)第一次取出的是黑球,且第二次取出的是白球的概率为P(AB);(Ⅲ)在第一次取出的是黑球的条件下,第二次取出的是白球的概率为P(B|A).【题目点拨】本题考查了古典概型的概率公式,考查了事件的相互独立性及条件概率,属于基础题.18、(1);(2)【解题分析】
(1)利用函数与相切于点,切线即可求的值.(2)若是函数图象的切线,设切点,表达函数的切线方程,表达,构造新函数,求其最小值即可.【题目详解】(1)由函数,则,,.所以,.(2)设切点,则切线方程为,即,亦即,由题意得.∴令.当时,在上单调递减;当时,在上单调递增;∴∴的最小值为.【题目点拨】本题考查了导数的几何意义以及利用导数研究函数的最值,解题的关键是熟记基本初等函数的导数,属于中档题.19、(1);(2)分布列见解析;【解题分析】
(1)由题意求出,从而,进而,.由此能求出.(2)由题意知,获赠话费的可能取值为20,40,60,1.分别求出相应的概率,由此能求出的分布列和.【题目详解】解:(1)由题意得.,,,,综上.(2)由题意知,获赠话费的可能取值为20,40,60,1.;;;;的分布列为:2040601.【题目点拨】本题考查概率的求法,考查离散型随机变量的分布列、数学期望的求法,考查正态分布等基础知识,考查运算求解能力,考查函数与方程思想,属于中档题.20、(1)(2)当时,四边形面积取得最大值为【解题分析】
(1)建立平面直角坐标系求出对应点的坐标,利用待定系数法求出抛物线方程,进行求解即可;(2)构造函数,求出函数的导数,利用函数最值极值和导数之间的关系求最值即可.【题目详解】⑴以为坐标原点,以所在的直线为轴,轴建立平面直角坐标系.所以,所以直线为因为抛物线是以为对称轴,设抛物线的方程为,因为点在抛物线上,所以,所以因为,所以,所以⑵因为,,所以四边形的面积设,由,解得:t1+0-↗极大值↘所以当时,取极大值且是最大值答:当时,四边形面积取得最大值为【题目点拨】该题考查的是有关函数应用的问题,涉及到的知识点有求函数的解析式,应用导数求函数的最值,属于中档题目.21、(1),2018年12月的市场占有率是;(2)选择釆购B款车型.【解题分析】
(1)求出相关系数,判断即可,求出回归方程的系数,求出回归方程代入的值,判断即可;
(2)分别求出的平均利
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年砜吡草唑市场营销趋势策略及未来销售渠道分析研究报告(-版)
- 2024-2030年直列式压滤机行业市场现状供需分析及重点企业投资评估规划分析研究报告
- 2024-2030年电子气门嘴行业市场发展分析及发展趋势与投资前景研究报告
- 2024-2030年理疗仪器产业发展分析及发展趋势与投资前景预测报告
- 2024-2030年特种通讯用品市场投资前景分析及供需格局研究预测报告
- 2024-2030年牙科麻醉输送系统行业市场现状供需分析及投资评估规划分析研究报告
- 2024-2030年煅烧无烟煤行业市场现状供需分析及投资评估规划分析研究报告
- 【备考2025】高考语文作文解析审题指导+范文
- 牙钻钻头项目运营指导方案
- 耐酸手套项目运营指导方案
- QGDW 11860-2018 抽水蓄能电站项目后评价技术标准
- 行车轨道更换施工方案
- 县烟草专卖局(分公司)市管员、客户经理、配送员联动工作机制
- 防汛工作检查督导制度
- 10以内带括号加减法(精华版)
- 员工持证上岗
- 北师大版四年级数学上册第六单元教材分析
- 西雅图图书馆案例分析
- 古典吉他谱《回忆组曲》五个乐章
- 房屋买卖合同(维文)
- 大学岗位聘任与考核办法
评论
0/150
提交评论