版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGE
10
2022MathLeagueInternationalSummerChallenge,Grade5(Unofficialversion,forreferenceonly)
Note:Thereareninequestionsintotal.Sevenquestionsareworth10pointseach.Twoquestionsareworth15pointseach.Thetotalpointsare100.
Question1(10Points)
Objective:
Helpasmanyladybugsaspossiblelandontheleaves.
Rules:
Ladybugsarriveinnumericalorder:Ladybug1,Ladybug2,Ladybug3,etc.
Youhelpeachladybugchoosewhethertolandontheleftleafortherightleaf.
Ifononeleaf,thenumberofdotsontwoladybugsaddsuptothenumberofdotsonathirdladybug,alloftheladybugsflyaway.
Inthefigurebelow,youputLadybug1ontherightleaf.ThenyouputLadybug2,Ladybug3,andLadybug4ontheleftleaf.ThenyouputLadybug5ontherightleaf.
NowthereisnowheretoputLadybug6.
IfLadybug6landsontheleftleaf,alloftheladybugswillflyaway,because2+4=6.IfLadybug6landsontherightleaf,alloftheladybugswillflyaway,because1+5=6.
Yousawhowtohelp5ladybugs.Whatisthelargestnumberofladybugsthatyoucanhelpinthiscase?Theansweris8,figurebelow.
Note:Youcan’tskipanyladybugs.Forexample,thefollowingisnotallowed.YouplaceLadybug1andLadybug2ontheleftleaf.ThenyouskipLadybug3,andplaceLadybug4ontheleftorrightleaf.ThisskippingLadybug3isnotallowed.Ladybugsarriveinnumericalorder,andyoumustplaceeachofthemoneitherleafinnumericalorder.Thisistrueforallthefollowingquestions.
Ifonlyladybugsthatarenumberedwithpowersof2(1,2,4,8,16,32,64,128,…)areoutflying,whatisthelargestnumberofladybugsthatyoucanhelp?Ladybugsstillarriveinincreasingorder.
Note:Pleaseenter0ifyouranswerisinfinitelymany,whichmeansyoucanplaceasmanyladybugsontheleavesasyouwant.Thereisnolimit.
Answer:0
Ifonlyladybugsthatarenumberedwithsquarenumbers(1,4,9,16,25,36,49,64,…)areoutflying,whatisthelargestnumberofladybugsthatyoucanhelp?Ladybugsstillarriveinincreasingorder.
Note:Pleaseenter0ifyouranswerisinfinitelymany,whichmeansyoucanplaceasmanyladybugsontheleavesasyouwant.Thereisnolimit.
Answer:0
Ifonlyladybugsthatarenumberedwithcubenumbers(1,8,27,64,125,216,…)areoutflying,whatisthelargestnumberofladybugsthatyoucanhelp?Ladybugsstillarriveinincreasingorder.
Note:Pleaseenter0ifyouranswerisinfinitelymany,whichmeansyoucanplaceasmanyladybugsontheleavesasyouwant.Thereisnolimit.
Answer:0
Ifonlyladybugsthatarenumberedwithnon-multiplesof5(1,2,3,4,6,7,8,9,11,12,13,14,16,17,18,19,…)areoutflying,whatisthelargestnumberofladybugsthatyoucanhelp?Ladybugsstillarriveinincreasingorder.
Note:Pleaseenter0ifyouranswerisinfinitelymany,whichmeansyoucanplaceasmanyladybugsontheleavesasyouwant.Thereisnolimit.
Answer:0
Question2(15Points)
Objective:
Findthegoldbarinasfewweighingsaspossible.
Rules:
Youcanuseabalancescaletocomparetheweightsoftwogroupsofbars.
Onlyonebarisgold,andallotherbarsarecounterfeits(fakes).
Thegoldbarisalittleheavierthaneachofthecounterfeits.
Allcounterfeitsweighthesame.
Theappearancesofallbarsareidentical.Theonlywaytofindoutthegoldbarisusingabalancescale.
Example1:
Therearetwobars.Oneisgold.Theotherisacounterfeit.Thegoldbarisalittleheavierthanthecounterfeit.Youneedoneweighingtofindoutthegoldbar.Inthefigurebelow,bar2isthegoldbar.
Example2:
Therearefourbars.Oneisgold.Theotherthreearecounterfeits.Thegoldbarisalittleheavierthaneachofthecounterfeits.Allcounterfeitsweighthesame.Theminimumnumberofweighingstoguaranteetofindoutthegoldbaris2,figurebelow.Inthefigurebelow,thegoldbarisbar2.
Anotherwaytodothisisthatyoufirstcomparetwobars.Ifoneisheavier,youaredone.Otherwise,youcomparetheothertwobars.Again,theminimumnumberofweighingstoguaranteetofindoutthegoldbaris2.
Thereare8bars.Oneisgold.Theother7arecounterfeits.Thegoldbarisalittleheavierthaneachofthecounterfeits.Allcounterfeitsweighthesame.Whatistheminimumnumberofweighingstoguaranteetofindoutthegoldbar?
Answer:2
Thereare9bars.Oneisgold.Theother8arecounterfeits.Thegoldbarisalittleheavierthaneachofthecounterfeits.Allcounterfeitsweighthesame.Whatistheminimumnumberofweighingstoguaranteetofindoutthegoldbar?
Answer:2
Thereare10bars.Oneisgold.Theother9arecounterfeits.Thegoldbarisalittleheavierthaneachofthecounterfeits.Allcounterfeitsweighthesame.Whatistheminimumnumberofweighingstoguaranteetofindoutthegoldbar?
Answer:3
Ifyoucandoatmost1weighing,thelargestnumberofbarsyoucanstartwithandstillfindthegoldbaris3.Andhereiswhy.
Placebar1ontheleftpan,andbar2ontherightpan.Ifbar2isheavier,thenthegoldbarisbar2,figurebelow.
Iftheweighingisbalanced,figurebelow,thenthegoldbarisbar3.
Ifyoucandoatmost2weighings,whatisthelargestnumberofbarsyoucanstartwithandstillfindthegoldbar?
Answer:9
Ifyoucandoatmost3weighings,whatisthelargestnumberofbarsyoucanstartwithandstillfindthegoldbar?
Answer:27
Nowwehavenewrules:
Youcanuseabalancescaletocomparetheweightsoftwogroupsofbars.
Onlyonebarisgold,andallotherbarsarecounterfeits(fakes).
Thegoldbariseitherlighterorheavierthaneachofthecounterfeits,butyoudon’tknowwhich.
Allcounterfeitsweighthesame.
Theappearancesofallbarsareidentical.Theonlywaytofindoutthegoldbarisusingabalancescale.
Thereare4bars.Oneisgold.Theother3arecounterfeits.Thegoldbariseitherlighterorheavierthaneachofthecounterfeits,butyoudon’tknowwhich.Allcounterfeitsweighthesame.Whatistheminimumnumberofweighingstoguaranteetofindoutthegoldbar?
Answer:2
Thereare8bars.Oneisgold.Theother7arecounterfeits.Thegoldbariseitherlighterorheavierthaneachofthecounterfeits,butyoudon’tknowwhich.Allcounterfeitsweighthesame.Whatistheminimumnumberofweighingstoguaranteetofindoutthegoldbar?
Answer:3
Thereare12bars.Oneisgold.Theother11arecounterfeits.Thegoldbariseitherlighterorheavierthaneachofthecounterfeits,butyoudon’tknowwhich.Allcounterfeitsweighthesame.Whatistheminimumnumberofweighingstoguaranteetofindoutthegoldbar?
Answer:3
Thereare13bars.Oneisgold.Theother12arecounterfeits.Thegoldbariseitherlighterorheavierthaneachofthecounterfeits,butyoudon’tknowwhich.Allcounterfeitsweighthesame.Whatistheminimumnumberofweighingstoguaranteetofindoutthegoldbar?
Answer:3
Question3(10Points)
Trueorfalse:Wheneverthereare19girlsand19boysareseatedaroundacirculartable,thereisalwaysapersonbothofwhoseneighborsareboys.
Note:Pleaseenter1ifyouranswerisTrue,and0ifyouranswerisFalse.
Answer:1
Trueorfalse:Wheneverthereare20girlsand20boysareseatedaroundacirculartable,thereisalwaysapersonbothofwhoseneighborsareboys.
Note:Pleaseenter1ifyouranswerisTrue,and0ifyouranswerisFalse.
Answer:0
Question4(10Points)
Howmanydiagonalsdoesaregular20-gonhave?
Note:Aregular20-gonisapolygon.Ithas20sides(edges)and20angles.Allsideshavethesamelength,andallanglesareequalinmeasure.
Answer:170
Question5(10Points)
Givenaregular180-gon,weconstruct180isoscelestrianglesontheexteriorofthepolygonsuchthateachisoscelestrianglehasanedgeofthepolygonasitsbaseandhaslegsformedbytheextensionsofthetwoadjacentsides.Computeindegreesthelargestangleofonesuchisoscelestriangle.
Note:
Aregular180-gonisapolygon.Ithas180sides(edges)and180angles.Allsideshavethesamelength,andallanglesareequalinmeasure.
Figurebelowshowsthebaseandtwolegsofanisoscelestriangle.Theshapeofthisisoscelestriangleinthefigurebelowisnotnecessarilytheshapeoftheisoscelestrianglesinthisquestion.
Enterthenumericvalueofyouransweronly.Forexample,ifyouransweris100degrees,pleaseenter100.
Answer:176
Question6(10Points)
Youareacontestantonagameshow.Therearethreecloseddoorsinfrontofyou.Thegameshowhosttellsyouthatbehindoneofthesedoorsisamilliondollarsincash,andthatbehindtheothertwodoorstherearetrashes.Youdonotknowwhichdoorscontainwhichprizes,butthegameshowhostdoes.
Thegameyouaregoingtoplayisverysimple:youpickoneofthethreedoorsandwintheprizebehindit.Afteryouhavemadeyourselection,thegameshowhostopensoneofthetwodoorsthatyoudidnotchooseandrevealstrash.Atthispoint,youaregiventheoptiontoeitherstickwithyouroriginaldoororswitchyourchoicetotheonlyremainingcloseddoor.
Tomaximizeyourchancetowinamilliondollarsincash,shouldyouswitch?Answer:
Yes
Choices:(a)Yes
No
Itdoesn’tmatterbecausetheprobabilityforyoutowinamilliondollarsincashstaysthesamenomatterifyouswitchornot.
Question7(10Points)
Onehundredextremelyintelligentmaleprisonersareimprisonedinsolitarycellsandondeathrow.Eachcellissoundproofedandcompletelywindowless.Thereisaseparateroomwithonehundredsmallboxesnumberedandlabeledfrom1to100.Insideeachoftheseboxesisaslipofpaperwithoneoftheprisoners’namesonit.Eachprisoner’snameonlyappearsonceandisinonlyoneoftheonehundredboxes.Thewardendecidesheisgoingtoplayagamewithalloftheprisoners.Iftheywin,theywillallbeletfree,butiftheylosethegame,theywillallbeimmediatelyexecuted.
Thehundredprisonersareallowedtoenterthisseparateroomwith100boxesinanypredeterminedordertheywish,buteachcanonlyentertheroomonceandthegameendsassoonasthehundredthpersonenterstheroom.(Atanytime,onlyoneprisonerisallowedtoenterandremaininthisroom.)Onceaprisonerenterstheroom,heisallowedtoopenandlookinsideasmanyasXboxes,whereXisapositiveintegernotgreaterthan100.Afteraprisonerhasopenedtheboxes(notmorethanX)andlookedinside,hemustshutthemandleaveeverythingexactlythewayitwasbeforeheentered.Theprisonersarenotallowedtocommunicatewitheachotherinanyway.Ifeveryprisonerisabletoentertheroomandopentheboxthatcontainshisownname,theywillallbereleasedfromprisonimmediately!However,ifevenjustoneprisonerenterstheroom,opensXboxes,anddoesnotopentheboxcontaininghisownname,theywillallbeexecutedimmediately.Luckilyfortheprisoners,thewardenhasdecidedtoallowthefirstprisonerintheroomtoopenallonehundredboxesifnecessaryandswitchthetwonamesinanytwoboxesifhewouldliketo.Thefirstprisonermustshutalltheboxesheopenedandleave
everythingexactlythewayitwasbeforeheentered,withthepossibleexceptionofthetwonameshechosetoswitch.
Again,inordertowinthisgame,allonehundredprisonersneedtoentertheroomandopentheboxwiththeirnameinit.Thewardenallowstheprisonerstogettogetherinthecourtyardtheweekbeforethisgamebeginstodiscussandcomeupwithaplan.Theprisonerscomeupwithaplantoguaranteethattheywouldwinthegame.Ofcourse,ifXisbigenough,forexampleX=100,thentheywillallbereleasedfromprison.WhatistheleastpossiblevalueofX?
Note:
Notwoormoreprisonerssharethesamename.
Thefirstprisonerintheroomisanexception,meaningthatheisabletoopenallonehundredboxesifnecessaryandswitchthetwonamesinanytwoboxesifhewouldliketo.Eachoftheother99prisonersisallowedtoopenandlookinsideasmanyasXboxes,whereXisapositiveintegernotgreaterthan100.Andtheycan’tswitchanythingordoanythingelse.
Noprisonerisallowedtomakeanykindofmark,sign,orhint.Theprisonersarenotallowedtocommunicatewitheachotherinanyway.
Here’spartoftheirplan:Firsttheprisonerswilldecidetheorderinwhichtheywillentertheroomandnumb
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 试用劳动合同参考样本
- 信息技术秘密授权使用与补偿贸易合同
- 库房租房合同协议书范本
- 移动应用商家合作契约
- 保姆雇佣合同协议
- 2024离婚协议书范本格式
- 车辆维修合同标准模板
- 建筑设计院合作协议书2024年
- 贷款抵押合同(23)
- 双方协议离婚协议书范文参考模板
- 《复活(节选)》课件+2024-2025学年统编版高中语文选择性必修上册
- 成人有创机械通气气道内吸引技术操作标准解读
- DB11T 583-2022 扣件式和碗扣式钢管脚手架安全选用技术规程
- 地基土浅层平板载荷试验方案
- 2024-2025学年初中信息技术(信息科技)七年级上册赣科版教学设计合集
- 第四单元检测卷(单元测试)-2024-2025学年三年级上册语文统编版
- 苏教版六年级上册数学期中考试试题带答案
- 浮选工理论考试题库(浓缩400题)
- 赶工措施费用计算(精编版)
- 预制装配式结构及预制构件工程吊装施工工艺
- 中国联通swot分析
评论
0/150
提交评论