版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江西省吉安市永新二中高二数学第二学期期末联考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如果(,表示虚数单位),那么()A.1 B. C.2 D.02.已知m,n是两条不同的直线,是两个不同的平面,则下列命题正确的是()A.若m,n没有公共点,则B.若,,则C.若,则D.若,则3.函数则函数的零点个数是()A. B. C. D.4.已知向量满足,且,则的夹角为()A. B. C. D.5.甲、乙、丙三人每人准备在3个旅游景点中各选一处去游玩,则在“至少有1个景点未被选择”的条件下,恰有2个景点未被选择的概率是()A.17 B.18 C.16.已知O为坐标原点,点F1、F2分别为椭圆C:x24+y23=1的左、右焦点,A为椭圆C上的一点,且A.32 B.34 C.57.有本相同的数学书和本相同的语文书,要将它们排在同一层书架上,并且语文书不能放在一起,则不同的放法数为()A. B. C. D.8.已知数列,都是等差数列,,,设,则数列的前2018项和为()A. B. C. D.9.欧拉公式:为虚数单位),由瑞士数学家欧拉发明,它建立了三角函数与指数函数的关系,根据欧拉公式,()A.1 B. C. D.10.为客观了解上海市民家庭存书量,上海市统计局社情民意调查中心通过电话调查系统开展专项调查,成功访问了位市民,在这项调查中,总体、样本及样本的容量分别是()A.总体是上海市民家庭总数量,样本是位市民家庭的存书量,样本的容量是B.总体是上海市民家庭的存书量,样本是位市民家庭的存书量,样本的容量是C.总体是上海市民家庭的存书量,样本是位市民,样本的容量是D.总体是上海市民家庭总数量,样本是位市民,样本的容量是11.若某几何体的三视图如右图所示,则该几何体的体积等于()A.10 B.20 C.30 D.6012.同时抛掷一颗红骰子和一颗蓝骰子,观察向上的点数,记“红骰子向上的点数小于4”为事件A,“两颗骰子的点数之和等于7”为事件B,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设函数,若是的极大值点,则a取值范围为_______________.14.已知随机变量,且,,则_______.15.若ξ~N,且P(2<ξ<4)=0.4,则P(ξ<0)=_____.16.如图所示,在平面四边形中,,,为正三角形,则面积的最大值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)正项数列的前项和满足.(Ⅰ)求,,;(Ⅱ)猜想的通项公式,并用数学归纳法证明.18.(12分)已知复数,且为纯虚数,求.(其中为虚数单位)19.(12分)(1)用分析法证明:;(2)用反证法证明:三个数中,至少有一个大于或等于.20.(12分)已知函数.(1)当时,证明:;(2)若在的最大值为2,求a的值.21.(12分)已知的展开式的各项系数之和等于的展开式中的常数项.求:(1)展开式的二项式系数和;(2)展开式中项的二项式系数.22.(10分)
某商场经销某商品,根据以往资料统计,顾客采用的付款期数的分布列为商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元.表示经销一件该商品的利润.(Ⅰ)求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率P(A);(Ⅱ)求的分布列及期望
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】分析:复数方程左边分子、分母同乘分母的共轭复数,化简为的形式,利用复数相等求出即可详解:解得故选点睛:本题主要考查了复数相等的充要条件,运用复数的乘除法运算法则求出复数的表达式,令其实部与虚部分别相等即可求出答案.2、D【解题分析】
由空间中点、线、面位置关系的判定与性质依次对选项进行判断,由此得到答案。【题目详解】两条直线没有公共点有平行和异面两种情形,故A,B错;对于C,还存在的情形:由线面垂直的性质可得D对,故选D.【题目点拨】本题考查学生对空间中点、线、面的位置关系的理解与掌握,重点考查学生的空间想象能力,属于中档题。3、A【解题分析】
通过对式子的分析,把求零点个数转化成求方程的根,结合图象,数形结合得到根的个数,即可得到零点个数.【题目详解】函数的零点即方程和的根,函数的图象如图所示:由图可得方程和共有个根,即函数有个零点,故选:A.【题目点拨】本题考查函数的零点与方程的根的个数的关系,注意结合图象,利用数形结合求得结果时作图很关键,要标准.4、C【解题分析】
设的夹角为,两边平方化简即得解.【题目详解】设的夹角为,两边平方,得,即,又,所以,则,所以.故选C【题目点拨】本题主要考查平面向量的数量积的计算和向量夹角的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.5、A【解题分析】
设事件A为:至少有1个景点未被选择,事件B为:恰有2个景点未被选择,计算P(AB)和P(A),再利用条件概率公式得到答案.【题目详解】设事件A为:至少有1个景点未被选择,事件B为:恰有2个景点未被选择P(AB)=P(B故答案选A【题目点拨】本题考查了条件概率,意在考查学生对于条件概率的理解和计算.6、B【解题分析】
根据AF2⊥F1F2且O为F1【题目详解】如下图所示:由AF2⊥F1∵O为F1F2中点∴OB为ΔA又AF2本题正确选项:B【题目点拨】本题考查椭圆几何性质的应用,关键是能够熟练掌握椭圆通径长和对称性,属于基础题.7、A【解题分析】由题意,故选A.点睛:本题是不相邻问题,解决方法是“插空法”,先把数学书排好(由于是相同的数学书,因此只有一种放法),再在数学书的6个间隔(含两头)中选3个放语文书(语文书也相同,只要选出位置即可),这样可得放法数为,如果是5本不同的数学书和3本不同的语文书,则放法为.8、D【解题分析】
利用,求出数列,的公差,可得数列,的通项公式,从而可得,进而可得结果.【题目详解】设数列,的公差分别为,,则由已知得,,所以,,所以,,所以,所以数列的前2018项和为,故选D.【题目点拨】本题主要考查等差数列通项公式基本量运算,考查了数列的求和,意在考查综合应用所学知识解答问题的能力,属于中档题.9、B【解题分析】
由题意将复数的指数形式化为三角函数式,再由复数的运算化简即可得答案.【题目详解】由得故选B.【题目点拨】本题考查欧拉公式的应用,考查三角函数值的求法与复数的化简求值,是基础题.10、B【解题分析】
根据总体、样本及样本的容量的概念,得到答案.【题目详解】根据题目可知,总体是上海市民家庭的存书量,样本是位市民家庭的存书量,样本的容量是故选B项.【题目点拨】本题考查总体、样本及样本的容量的概念,属于简单题.11、B【解题分析】
分析:根据三视图得到原图,再由椎体的体积公式得到结果.详解:由三视图得到原图是,底面为直角三角形,高为5的直棱柱,沿面对角线切去一个三棱锥后剩下的部分.体积为:故答案为B.点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.12、B【解题分析】
为抛掷两颗骰子,红骰子的点数小于4同时两骰子的点数之和等于7的概率,利用公式求解即可.【题目详解】解:由题意,为抛掷两颗骰子,红骰子的点数小于4时两骰子的点数之和等于7的概率.抛掷两颗骰子,红骰子的点数小于4,基本事件有个,红骰子的点数小于4时两骰子的点数之和等于7,基本事件有3个,分别为(1,6),(2,5),(3,4),.故选:.【题目点拨】本题考查条件概率的计算,考查学生分析解决问题的能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】试题分析:的定义域为,由,得,所以.①若,由,得,当时,,此时单调递增,当时,,此时单调递减,所以是的极大值点;②若,由,得或.因为是的极大值点,所以,解得,综合①②:的取值范围是,故答案为.考点:1、利用导数研究函数的单调性;2、利用导数研究函数的极值.14、【解题分析】
利用随机变量,关于对称,结合已知求出结果【题目详解】随机变量满足,图象关于对称,则故答案为【题目点拨】本题考查了正态分布,由正态分布的对称性即可计算出结果15、0.1.【解题分析】
由正态分布曲线的对称性,可得,进而得到所以,即可求解.【题目详解】由题意,随机变量,且,根据正态分布曲线的对称性,可得,所以.【题目点拨】本题主要考查了正态分布的应用,其中解答中熟记正态分布曲线的对称性是解答的关键,着重考查了推理与运算能力,属于基础题.16、.【解题分析】分析:在中设运用余弦定理,表示出,利用正弦定理可得,进而用三角形面积公式表示出,利用三角函数的有界性可得结果.详解:在中,由余弦定理可知,正三角形,,由正弦定理得:,,,,为锐角,,,,当时,,最大值为,故答案为.点睛:本题考查正弦定理与余弦定理的应用以及辅助角公式的应用,属于难题.对余弦定理一定要熟记两种形式:(1);(2),同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住等特殊角的三角函数值,以便在解题中直接应用.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)猜想证明见解析【解题分析】分析:(1)直接给n取值求出,,.(2)猜想的通项公式,并用数学归纳法证明.详解:(Ⅰ)令,则,又,解得;令,则,解得;令,则,解得.(Ⅱ)由(Ⅰ)猜想;下面用数学归纳法证明.由(Ⅰ)可知当时,成立;假设当时,,则.那么当时,,由,所以,又,所以,所以当时,.综上,.点睛:(1)本题主要考查数学归纳法,意在考查学生对该基础知识的掌握水平和基本计算能力.(2)数学归纳法的步骤:①证明当n=1时,命题成立。②证明假设当n=k时命题成立,则当n=k+1时,命题也成立.由①②得原命题成立.18、【解题分析】
利用复数的运算法则、纯虚数的定义出复数,再代入目标式子利用复数的运算法则、模的计算公式即可得到答案.【题目详解】复数,且为纯虚数.即为纯虚数,,,解得..,.【题目点拨】本题考查了复数的运算法则、纯虚数的定义、模的计算公式,考查对概念的理解、考查基本运算求解能力,属于基础题.19、(1)证明见解析;(2)证明见解析.【解题分析】试题分析:(1)结合不等式的特征,两边平方,用分析法证明不等式即可;(2)利用反证法,假设这三个数没有一个大于或等于,然后结合题意找到矛盾即可证得题中的结论.试题解析:(1)因为和都是正数,所以要证,只要证,展开得,只要证,只要证,因为成立,所以成立.(2)假设这三个数没有一个大于或等于,即,上面不等式相加得(*)而,这与(*)式矛盾,所以假设不成立,即原命题成立.点睛:一是分析法是“执果索因”,特点是从“未知”看“需知”,逐步靠拢“已知”,其逐步推理,实际上是寻找使结论成立的充分条件;二是应用反证法证题时必须先否定结论,把结论的反面作为条件,且必须根据这一条件进行推理,否则,仅否定结论,不从结论的反面出发进行推理,就不是反证法.所谓矛盾主要指:①与已知条件矛盾;②与假设矛盾;③与定义、公理、定理矛盾;④与公认的简单事实矛盾;⑤自相矛盾.20、(1)见解析(2)【解题分析】
(1)由导数求出的最大值即可证;(2)求出导函数,分类讨论确定的正负,得的单调性及最大值后可得.【题目详解】解:(1)的定义域为,当时,,.令,得,令,得;所以在单调递增,在单调递减.所以,即.(2),(i)当时,在单调递增,它的最大值为,所以符合题意;(ii)当时,在单调递增,在单调递减,它的最大值为,解得(不合,舍去);(iii)当时,在单调递减,它的最大值为,所以(不合,舍去);综上,a的值为.【题目点拨】本题考查导数的应用,利用导数研究函数的单调性、最值等问题,考查抽象概括能力、推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想、分类与整合思想、数形结合思想,体现综合性与应用性,导向对发展逻辑推理、直观想象、数学运算等核心素
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版墙纸购销合同范本
- 2025年度数字经济基础设施建设承包借款合同4篇
- 2024预埋件研发与生产项目合同范本3篇
- 2024食品物流信息化管理系统合同
- 2025年度文化创意产品采购合同知识产权保护与市场推广3篇
- 2025年度专业市场租赁协议范本4篇
- 2025年度智慧社区物业服务承包合同4篇
- 2025年度电力企业财务预算出纳人员担保合同3篇
- 2025年度商场橱窗窗帘广告设计与安装合同4篇
- 2025年度新能源汽车制造项目承包商担保合同规范4篇
- 春节英语介绍SpringFestival(课件)新思维小学英语5A
- 进度控制流程图
- 2023年江苏省南京市中考化学真题
- 【阅读提升】部编版语文五年级下册第四单元阅读要素解析 类文阅读课外阅读过关(含答案)
- 供电副所长述职报告
- 现在完成时练习(短暂性动词与延续性动词的转换)
- 产品质量监控方案
- 物业总经理述职报告
- 新起点,新发展心得体会
- 深圳大学学校简介课件
- 校园欺凌问题成因及对策分析研究论文
评论
0/150
提交评论