版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省绿春县一中2024届数学高二下期末达标测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.定义在上的函数,满足为的导函数,且,若,且,则有()A. B.C. D.不确定2.参数方程(θ∈R)表示的曲线是()A.圆 B.椭圆 C.双曲线 D.抛物线3.若向量,满足,与的夹角为,则等于()A. B. C.4 D.124.如图,在空间直角坐标系中有直三棱柱,且,则直线与直线夹角的余弦值为()A. B. C. D.5.设,则A. B. C. D.6.定义在上的偶函数的导函数为,若对任意的正实数,都有恒成立,则使成立的实数的取值范围为(
)A. B. C. D.7.己知弧长的弧所对的圆心角为弧度,则这条弧所在的圆的半径为()A. B. C. D.8.将三枚骰子各掷一次,设事件为“三个点数都不相同”,事件为“至少出现一个6点”,则概率的值为()A. B. C. D.9.过点且斜率为的直线与抛物线:交于,两点,若的焦点为,则()A. B. C. D.10.已知高为的正三棱锥的每个顶点都在半径为的球的球面上,若二面角的正切值为4,则()A. B. C. D.11.“”是“直线与直线平行”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要12.甲乙丙三人代表班级参加校运会的跑步,跳远,铅球比赛,每人参加一项,每项都要有人参加,他们的身高各不同.现了解到以下情况:(1)甲不是最高的;(2)最高的没报铅球;(3)最矮的参加了跳远;(4)乙不是最矮的,也没参加跑步;可以判断丙参加的比赛项目是()A.跑步比赛 B.跳远比赛 C.铅球比赛 D.无法判断二、填空题:本题共4小题,每小题5分,共20分。13.将红、黄、蓝三种颜色的三颗棋子分别放入方格图中的三个方格内,如图,要求任意两颗棋子不同行、不同列,且不在方格图所在正方形的同一条对角线上,则不同放法共有________种.14.已知从装有个球(其中个白球,1个黑球)的口袋中取出个球,,,共有种取法,在这种取法中,可以分成两类:一类是取出的个球全部为白球,另一类是取出1个黑球和个白球,共有种取法,即有等式成立,试根据上述思想,化简下列式子:________,15.若随机变量,且,则_______.16.某产品的广告费用(万元)与销售额(万元)的统计数据如下表:根据上表可得回归方程中的为7。据此模型预测广告费用为10万元时销售额为__________万元。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数f(x)=alnx﹣ex(a∈R).其中e是自然对数的底数.(1)讨论函数f(x)的单调性并求极值;(2)令函数g(x)=f(x)+ex,若x∈[1,+∞)时,g(x)≥0,求实数a的取值范围.18.(12分)现从某高中随机抽取部分高二学生,调査其到校所需的时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中到校所需时间的范围是,样本数据分组为.(1)求直方图中的值;(2)如果学生到校所需时间不少于1小时,则可申请在学校住宿.若该校录取1200名新生,请估计高二新生中有多少人可以申请住宿;(3)以直方图中的频率作为概率,现从该学校的高二新生中任选4名学生,用表示所选4名学生中“到校所需时间少于40分钟”的人数,求的分布列和数学期望.19.(12分)已知函数.(1)求函数的单调区间;(2)当时,求函数的最大值.20.(12分)若关于的不等式在实数范围内有解.(1)求实数的取值范围;(2)若实数的最大值为,且正实数满足,求证:.21.(12分)市某机构为了调查该市市民对我国申办年足球世界杯的态度,随机选取了位市民进行调查,调查结果统计如下:支持不支持合计男性市民女性市民合计(1)根据已知数据,把表格数据填写完整;(2)利用(1)完成的表格数据回答下列问题:(i)能否在犯错误的概率不超过的前提下认为支持申办足球世界杯与性别有关;(ii)已知在被调查的支持申办足球世界杯的男性市民中有位退休老人,其中位是教师,现从这位退休老人中随机抽取人,求至多有位老师的概率.附:,其中.22.(10分)已知函数.(1)画出函数的大致图象,并写出的值域;(2)若关于的不等式有解,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
函数满足,可得.由,易知,当时,,单调递减.由,则.当,则.当,则,,,即.故选A.2、A【解题分析】
利用平方关系式消去参数可得即可得到答案.【题目详解】由可得,所以,化简得.故选:A【题目点拨】本题考查了参数方程化普通方程,考查了平方关系式,考查了圆的标准方程,属于基础题.3、B【解题分析】
将平方后再开方去计算模长,注意使用数量积公式.【题目详解】因为,所以,故选:B.【题目点拨】本题考查向量的模长计算,难度一般.对于计算这种形式的模长,可通过先平方再开方的方法去计算模长.4、A【解题分析】
设CA=2,则C(0,0,0),A(2,0,0),B(0,0,1),C1(0,2,0),B1(0,2,1),可得=(-2,2,1),=(0,2,-1),由向量的夹角公式得cos〈,〉=5、C【解题分析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,然后求解复数的模.详解:,则,故选c.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.6、A【解题分析】
分析:构造新函数,利用导数确定它的单调性,从而可得题中不等式的解.详解:设,则,由已知当时,,∴在上是减函数,又∵是偶函数,∴也是偶函数,,不等式即为,即,∴,∴,即.故选A.点睛:本题考查用导数研究函数的单调性,然后解函数不等式.解题关键是构造新函数.新函数的结构可结合已知导数的不等式和待解的不等式的形式构造.如,,,等等.7、D【解题分析】
利用弧长公式列出方程直接求解,即可得到答案.【题目详解】由题意,弧长的弧所对的圆心角为2弧度,则,解得,故选D.【题目点拨】本题主要考查了圆的半径的求法,考查弧长公式等基础知识,考查了推理能力与计算能力,是基础题.8、A【解题分析】考点:条件概率与独立事件.分析:本题要求条件概率,根据要求的结果等于P(AB)÷P(B),需要先求出AB同时发生的概率,除以B发生的概率,根据等可能事件的概率公式做出要用的概率.代入算式得到结果.解:∵P(A|B)=P(AB)÷P(B),P(AB)==P(B)=1-P()=1-=1-=∴P(A/B)=P(AB)÷P(B)==故选A.9、D【解题分析】分析:由抛物线方程求出抛物线的焦点坐标,由点斜式求出直线方程,与抛物线方程联立求出的坐标,利用数量积的坐标表示可得结果.详解:抛物线的焦点为,过点且斜率为的直线为,联立直线与抛物线,消去可得,,解得,不仿,,则,故选D.点睛:本题考查抛物线的简单性质的应用,平面向量的数量积的应用,意在考查综合运用所学知识解决问题的能力,属于中档题.10、D【解题分析】
过作平面于,为中点,连接.证明面角的平面角为,计算得到,通过勾股定理计算得到答案.【题目详解】如图:正三棱锥,过作平面于,为中点,连接.易知:为中点二面角的平面角为正切值为4在中,根据勾股定理:故答案选D【题目点拨】本题考查了三棱锥的外接球,二面角,意在考查学生的计算能力和空间想象能力.11、B【解题分析】
时,直线与直线不平行,所以直线与直线平行的充要条件是,即且,所以“”是直线与直线平行的必要不充分条件.故选B.12、A【解题分析】分析:由(1),(3),(4)可知,乙参加了铅球,由(2)可知乙不是最高的,所以三人中乙身高居中;再由(1)可知,甲是最矮的,参加了跳远,即可得出结论.详解:由(1),(3),(4)可知,乙参加了铅球,由(2)可知乙不是最高的,所以三人中乙身高居中;再由(1)可知,甲是最矮的,参加了跳远,所以丙最高,参加了跑步比赛.故选:A.点睛:本题考查合情推理,考查学生分析解决问题的能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
根据题意,用间接法分析,先计算三颗棋子分别放入方格图中的三个方格内任意两颗棋子不同行、不同列的放法数目,再排除其中在同一条对角线上的数目,分析即可得出答案.【题目详解】解:根据题意,用间接法分析:若三颗棋子分别放入方格图中的三个方格内,且任意两颗棋子不同行、不同列,第一颗棋子有种放法,第二颗棋子有种放法,第三颗棋子有种放法,则任意两颗棋子不同行、不同列的放法有种,其中在正方形的同一条对角线上的放法有种,则满足题意的放法有种.故答案为:.【题目点拨】本题考查分步计数原理的应用,属于基础题.14、【解题分析】
在式子中,从第一项到最后一项分别表示:从装有个白球,个黑球的袋子里,取出个球的所有情况取法总数的和,从装有球中取出个球的不同取法数,根据排列组合公式,易得答案.【题目详解】在中,从第一项到最后一项分别表示:从装有个白球,个黑球的袋子里,取出个球的所有情况取法总数的和,故从装有球中取出个球的不同取法数.故答案为:【题目点拨】本题结合考查推理和排列组合,处理本题的关键是熟练掌握排列组合公式,明白每一项所表示的含义,再结合已知条件进行分析,最后给出正确的答案.15、【解题分析】
由,得,两个式子相加,根据正态分布的对称性和概率和为1即可得到答案.【题目详解】由随机变量,且,根据正态分布的对称性得且正态分布的概率和为1,得.故答案为0.15【题目点拨】本题考查了正态分布曲线的特点及曲线所表示的意义,属于基础题.16、73.5【解题分析】
求出,根据回归直线过样本点的中心,结合已知为7,可以求出,把,代入回归方程中,可预测出销售额.【题目详解】由题表可知,,代入回归方程,得,所以回归方程为,所以当时,(万元).【题目点拨】本题考查了回归直线过样本点的中心这一结论.考查了学生的运算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【解题分析】
(1)函数f(x)的定义域为(1,+∞).求出函数的导函数,然后对a分类讨论可得原函数的单调性并求得极值;(2)对g(x)求导函数,对a分类讨论,当a≥1时,易得g(x)为单调递增,有g(x)≥g(1)=1,符合题意.当a<1时,结合零点存在定理可得存在x1∈(1,)使g′(x1)=1,再结合g(1)=1,可得当x∈(1,x1)时,g(x)<1,不符合题意.由此可得实数a的取值范围.【题目详解】(1)函数f(x)的定义域为(1,+∞).f′(x).①当a≤1时,f′(x)<1,可得函数f(x)在(1,+∞)上单调递减,f(x)无极值;②当a>1时,由f′(x)>1得:1<x,可得函数f(x)在(1,)上单调递增.由f′(x)<1,得:x,可得函数f(x)在(,+∞)单调递减,∴函数f(x)在x时取极大值为:f()=alna﹣2a;(2)由题意有g(x)=alnx﹣ex+ex,x∈[1,+∞).g′(x).①当a≥1时,g′(x).故当x∈[1,+∞)时,g(x)=alnx﹣ex+ex为单调递增函数;g(x)≥g(1)=1,符合题意.②当a<1时,g′(x),令函数h(x),由h′(x)1,c∈[1,+∞),可知:g′(x)为单调递增函数,又g′(1)=a<1,g′(x),当x时,g′(x)>1.∴存在x1∈(1,)使g′(x1)=1,因此函数g(x)在(1,x1)上单调递减,在(x1,+∞)上单调递增,又g(1)=1,∴当x∈(1,x1)时,g(x)<1,不符合题意.综上,所求实数a的取值范围为[1,+∞).【题目点拨】本题考查利用导数研究函数的单调性,考查利用导数求函数的最值,考查数学转化思想方法及分类讨论的数学思想方法,考查了利用了进行放缩的技巧,是难题.18、(1);(2)180;(3).【解题分析】分析:(1)根据频率分布直方图的矩形面积之和为1求出x的值;(2)根据上学时间不少于1小时的频率估计住校人数;(3)根据二项分布的概率计算公式得出分布列,再计算数学期望.详解:(1)由直方图可得,∴.(2)新生上学所需时间不少于1小时的频率为:,,∴估计1200名新生中有180名学生可以申请住.(3)的可能取值为,有直方图可知,每位学生上学所需时间少于40分钟的概率为,,,,,,则的分布列为01234的数学期望.点睛:本题考查了频率分布直方图,离散型随机变量的分布列与数学期望,属于中档题.19、(1)的单调增区间为,;单调减区间为(2)【解题分析】
(1)函数求导数,分别求导数大于零小于零的范围,得到单调区间.(2)根据(1)中的单调区间得到最大值.【题目详解】解:(1)当时,,或;当时,.∴的单调增区间为,;单调减区间为.(2)分析可知的递增区间是,,递减区间是,当时,;当时,.由于,所以当时,.【题目点拨】本题考查了函数的单调区间,最大值,意在考查学生的计算能力.20、(Ⅰ)(Ⅱ)见证明【解题分析】
(Ⅰ)不等式在实数范围内有解,也即是成立,求出最大值即可;(Ⅱ)先由(Ⅰ)得到,因此,展开之后结合基本不等式即可证明结论成立;也可利用柯西不等式来证明.【题目详解】解:(Ⅰ)因为所以又因为所以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度新能源汽车充电站承建与配套设施合同4篇
- 二零二五年度限量版国画作品购买合同3篇
- 二零二五年度绿化工程项目资金监管与服务合同示范文本3篇
- 二零二五年度股权代持与公司并购重组合同3篇
- 2025年度猪圈养殖废弃物无害化处理承包合同264篇
- 2025年度春国家开放大学在线课程开发与授权合同4篇
- 二零二五版高空作业吊装服务承包合同样本6篇
- 二零二四年土工布材料研发与售后服务保障合同3篇
- 2025年度车辆运输与仓储一体化合同4篇
- 2025年度拆除房屋及新建景观工程施工合同范本4篇
- 开展课外读物负面清单管理的具体实施举措方案
- 2025年云南中烟工业限责任公司招聘420人高频重点提升(共500题)附带答案详解
- 《AM聚丙烯酰胺》课件
- 系统动力学课件与案例分析
- 《智能网联汽车智能传感器测试与装调》电子教案
- 客户分级管理(标准版)课件
- 2023年江苏省南京市中考化学真题
- 供电副所长述职报告
- 校园欺凌问题成因及对策分析研究论文
- 技术支持资料投标书
- 老年人意外事件与与预防
评论
0/150
提交评论