版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山西省应一中数学高二下期末调研模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知i是虚数单位,若复数z满足,则=A.-2i B.2i C.-2 D.22.已知函数,则函数的大致图象是()A. B.C. D.3.给出一个命题p:若,且,则a,b,c,d中至少有一个小于零,在用反证法证明p时,应该假设()A.a,b,c,d中至少有一个正数 B.a,b,c,d全为正数C.a,b,c,d全都大于或等于0 D.a,b,c,d中至多有一个负数4.两个变量的相关关系有正相关,负相关,不相关,则下列散点图从左到右分别反映的变量间的相关关系是A. B. C. D.5.已知i是虚数单位,则复数的共轭复数在复平面内对应的点所在的象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.由半椭圆与半椭圆合成的曲线称作“果圆”,如图所示,其中,.由右椭圆的焦点和左椭圆的焦点,确定叫做“果圆”的焦点三角形,若“果圆”的焦点为直角三角形.则右椭圆的离心率为()A. B. C. D.7.已知函数,若对于任意的,都有成立,则的最小值为()A.4 B.1 C. D.28.设函数可导,则等于()A.B.C.D.9.若复数满足,则复数在复平面上所对应的图形是()A.椭圆 B.双曲线 C.直线 D.线段10.命题“任意”为真命题的一个充分不必要条件是()A. B. C. D.11.设是函数的定义域,若存在,使,则称是的一个“次不动点”,也称在区间I上存在“次不动点”.若函数在上存在三个“次不动点”,则实数的取值范围是()A. B. C. D.12.设点在曲线上,点在曲线上,则最小值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.的展开式中的系数是__________.14.若交大附中共有名教职工,那么其中至少有两人生日在同一天的概率为__________.15.已知变量满足约束条件,则目标函数的最小值为__________.16.已知数列是正项数列,是数列的前项和,且满足.若,是数列的前项和,则_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在三棱锥P-ABC中,,O是AC的中点,,,.(1)证明:平面平面ABC;(2)若,,D是AB的中点,求二面角的余弦值.18.(12分)已知函数.(1)若,求函数的单调区间;(2)若的极小值点,求实数a的取值范围.19.(12分)已知过点A(0,2)的直线l与椭圆C:x2(1)若直线l的斜率为k,求k的取值范围;(2)若以PQ为直径的圆经过点E(1,0),求直线l的方程.20.(12分)在正四棱锥P-BCD中,正方形ABCD的边长为32,高OP=6,E是侧棱PD上的点且PE=13PD,F是侧棱PA上的点且PF=12(1)求平面EFG的一个法向量n;(2)求直线AG与平面EFG所成角θ的大小;(3)求点A到平面EFG的距离d.21.(12分)设函数.(1)若函数为奇函数,(0,),求的值;(2)若=,=,(0,),求的值.22.(10分)已知函数.(1)当时,解不等式;(2)若存在实数解,求实数a取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】由得,即,所以,故选A.【名师点睛】复数代数形式的加减乘除运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化.注意下面结论的灵活运用:(1)(1±i)2=±2i;(2)=i,=-i.2、A【解题分析】
根据函数的奇偶性和特殊值进行排除可得结果.【题目详解】由题意,所以函数为偶函数,其图象关于轴对称,排除D;又,所以排除B,C.故选A.【题目点拨】已知函数的解析式判断图象的大体形状时,可根据函数的奇偶性,判断图象的对称性:如奇函数在对称的区间上单调性一致,偶函数在对称的区间上单调性相反,这是判断图象时常用的方法之一.3、C【解题分析】
由“中至少一个小于零”的否定为“全都大于等于”即可求解.【题目详解】因为“a,b,c,d中至少有一个小于零”的否定为“全都大于等于”,
所以由用反证法证明数学命题的方法可得,应假设“全都大于等于”,
故选:C.【题目点拨】本题主要考查了反证法,反证法的证明步骤,属于容易题.4、D【解题分析】
分别分析三个图中的点的分布情况,即可得出图是正相关关系,图不相关的,图是负相关关系.【题目详解】对于,图中的点成带状分布,且从左到右上升,是正相关关系;对于,图中的点没有明显的带状分布,是不相关的;对于,图中的点成带状分布,且从左到右是下降的,是负相关关系.故选:D.【题目点拨】本题考查了利散点图判断相关性问题,是基础题.5、A【解题分析】
先将复数化为代数形式,再根据共轭复数的概念确定对应点,最后根据对应点坐标确定象限.【题目详解】解:∵,∴,∴复数z的共轭复数在复平面内对应的点的坐标为(),所在的象限为第一象限.故选:A.点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如.其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为6、B【解题分析】
根据“果圆”关于轴对称,可得是以为底的等腰三角形,由是直角三角形,得出,.再建立关于,,之间的关系式,求出结果.【题目详解】解:连接,,根据“果圆”关于轴对称,可得是以为底的等腰三角形,是直角三角形,,.又和分别是椭圆和的半焦距,,即.,.即,.故选:B.【题目点拨】本题考查椭圆的标准方程与简单几何性质,属于中档题.7、D【解题分析】
由题意得出的一个最大值为,一个最小值为,于此得出的最小值为函数的半个周期,于此得出答案.【题目详解】对任意的,成立.所以,,所以,故选D.【题目点拨】本题考查正余弦型函数的周期性,根据题中条件得出函数的最值是解题的关键,另外就是灵活利用正余弦型函数的周期公式,考查分析问题的能力,属于中等题.8、C【解题分析】,故选C.9、D【解题分析】
根据复数的几何意义知,复数对应的动点P到对应的定点的距离之和为定值2,且,可知动点的轨迹为线段.【题目详解】设复数,对应的点分别为,则由知:,又,所以动点P的轨迹为线段.故选D【题目点拨】本题主要考查了复数的几何意义,动点的轨迹,属于中档题.10、C【解题分析】试题分析:对此任意性问题转化为恒成立,当,即,,若是原命题为真命题的一个充分不必要条件,那应是的真子集,故选C.考点:1.集合;2.充分必要条件.11、A【解题分析】
由已知得在上有三个解。即函数有三个零点,求出,利用导函数性质求解。【题目详解】因为函数在上存在三个“次不动点”,所以在上有三个解,即在上有三个解,设,则,由已知,令得,即或当时,,;,,要使有三个零点,则即,解得;当时,,;,,要使有三个零点,则即,解得;所以实数的取值范围是故选A.【题目点拨】本题考查方程的根与函数的零点,以及利用导函数研究函数的单调性,属于综合体。12、B【解题分析】
由题意知函数y=ex与y=ln(2x)互为反函数,其图象关于直线y=x对称,两曲线上点之间的最小距离就是y=x与y=ex上点的最小距离的2倍.设y=ex上点(x0,y0)处的切线与直线y=x平行.则,∴x0=ln2,y0=1,∴点(x0,y0)到y=x的距离为=(1-ln2),则|PQ|的最小值为(1-ln2)×2=(1-ln2).二、填空题:本题共4小题,每小题5分,共20分。13、243【解题分析】分析:先得到二项式的展开式的通项,然后根据组合的方式可得到所求项的系数.详解:二项式展开式的通项为,∴展开式中的系数为.点睛:对于非二项式的问题,解题时可转化为二项式的问题处理,对于无法转化为二项式的问题,可根据组合的方式“凑”出所求的项或其系数,此时要注意考虑问题的全面性,防止漏掉部分情况.14、1【解题分析】分析:根据每年有天,可判断名教职工,中至少有两人生日在同一天为必然事件,从而可得结果.详解:假设每一天只有一个人生日,则还有人,所以至少两个人同日生为必然事件,所以至少有两人生日在同一天的概率为,故答案为.点睛:本题考查必然事件的定义以及必然事件的概率,属于简单题.15、4【解题分析】分析:作出不等式组对应的平面区域,利用的几何意义和数形结合即可得到答案详解:作出不等式组对应的平面区域如图:由可得:平移直线,由图象可知当直线经过点时,直线的截距最大,此时最小,解得,即此时故目标函数的最小值为点睛:本题主要考查的知识点是线性规划的应用,画出可行域,转化目标函数,将其转化为几何意义,在轴的截距问题即可解答。16、【解题分析】
利用将变为,整理发现数列{}为等差数列,求出,进一步可以求出,再将,代入,发现可以裂项求的前99项和。【题目详解】当时,符合,当时,符合,【题目点拨】一般公式的使用是将变为,而本题是将变为,给后面的整理带来方便。先求,再求,再求,一切都顺其自然。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)【解题分析】
(1)利用PO⊥AC,OP2+OB2=PB2,即PO⊥OB.可证明PO⊥面ABC,即可得平面PAC⊥平面ABC;(2)由(1)得PO⊥面ABC,过O作OM⊥CD于M,连接PM,则∠PMO就是二面角P﹣CD﹣B的补角.解三角形POM即可.【题目详解】(1)∵AP=CP,O是AC的中点,∴PO⊥AC,∵PO=1,OB=2,.∴OP2+OB2=PB2,即PO⊥OB.∵AC∩OB=O,∴PO⊥面ABC,∵PO⊂面PAC,∴平面PAC⊥平面ABC;(2)由(1)得PO⊥面ABC,过O作OM⊥CD于M,连接PM,则∠PMO就是二面角P﹣CD﹣B的平面角的补角.∵OC1,∴AC=2,AB,∴CD.∴S△COD∴,∴OM.PM.∴∴二面角P﹣CD﹣B的余弦值为.【题目点拨】本题考查了空间面面垂直的证明,空间二面角的求解,作出二面角的平面角是解题的关键,属于中档题.18、(1)单调减区间为,单调增区间为(2)【解题分析】
(1)将参数值代入得到函数的表达式,将原函数求导得到导函数,根据导函数的正负得到函数的单调区间;(2),因为是的极小值点,所以,得到;分情况讨论,每种情况下是否满足x=1是函数的极值,进而得到结果.【题目详解】(1)由题由,得由,得;由,得的单调减区间为,单调增区间为(2),因为是的极小值点,所以,即,所以1°当时,在上单调递减;在上单调递增;所以是的极小值点,符合题意;2°当时,在上单调递增;在上单调递减;在上单调递增;所以是的极小值点,符合题意;3°当时,在上单调递增,无极值点,不合题意4°当时,在上单调递增;在上单调递减;在上单调递增;所以是的极大值点,不符合题意;综上知,所求的取值范围为【题目点拨】这个题目考查了导数在研究函数的极值和单调性中的应用,极值点即导函数的零点,但是必须是变号零点,即在零点两侧导数值正负相反;极值即将极值点代入原函数取得的函数值,注意分清楚这些概念,再者对函数求导后如果出现二次,则极值点就是导函数的两个根,可以结合韦达定理应用解答.19、(1)(-∞,-1)∪(1,+∞);(2)x=0或y=-7【解题分析】试题分析:(1)由题意设出直线l的方程,联立直线方程与椭圆方程,化为关于的一元二次方程后由判别式大于求得的取值范围;(2)设出的坐标,利用根与系数的关系得到的横坐标的和与积,结合以为直径的圆经过点,由EP·EQ=0求得值,则直线l方程可求.试题解析:(1)依题意,直线l的方程为y=kx+2,由x23+y2=1y=kx+2,消去y得(3k2+1)x(2)当直线l的斜率不存在时,直线l的方程为x=0,则P(0,1),Q(0,-1),此时以为直径的圆过点E(1,0),满足题意.直线l的斜率存在时,设直线l的方程为y=kx+2,P(x1,y1),Q(x2EP=(k2+1)因为以直径的圆过点E(1,0),所以EP·EQ=0,即12k+143k2故直线l的方程为y=-76x+2.综上,所求直线l的方程为x=0考点:1.直线与椭圆的综合问题;2.韦达定理.【方法点睛】本题主要考查的是椭圆的简单性质,直线与圆锥曲线位置关系的应用,体现了设而不求的解题思想方法,是中档题,本题(1)问主要是联立直线与椭圆方程,化成一元二次方程的判别式大于求出的取值范围,(2)利用EP·EQ=0求出值,进而求出直线方程,因此解决直线与圆锥曲线位置关系时应该熟练运用韦达定理解题.20、(1)n=(0,1,2)(2)直线AG与平面EFG所成角θ=arcsin(3)6【解题分析】
(1)建立空间直角坐标系,求出EF=(3,2,-1),EG=(-2,4,-2),设平面EFG的一个法向量n=(x,y,z),由n⋅EF(2)求出AG=(-8,2,2),由sinθ=|cos<AG,n(3)求出EA=(6,2,-4),由点A到平面EFG的距离d=【题目详解】(1)∵在正四棱锥P-BCD中,正方形ABCD的边长为32,高OP=6E是侧棱PD上的点且PE=13PD,F是侧棱PAG是△PBC的重心.如图建立空间直角坐标系.∴D(0,-6,0),P(0,0,6),E(0,-2,4),A(6,0,0),B(0,6,0),C(-6,0,0),G(-2,2,2),EF=(3,2,-1),EG=(-2,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版苗圃苗木线上线下销售渠道合作协议4篇
- 2025年度个人房产抵押贷款还款协议书模板4篇
- 2025年度航空航天模具研发制造合同4篇
- 二零二五版豪华车型购车指标使用权租赁协议3篇
- 2025年物业广告位租赁与环保理念推广合作协议3篇
- 2025版企业内部员工技能培训学员协议3篇
- 2025年环保打印机购销合同绿色环保版4篇
- 个人招标工作心得:2024年实践与思考3篇
- 二零二五年度航空器租赁合同租赁期限与维护保养责任4篇
- 2025年农业大棚租赁与智能灌溉系统安装合同4篇
- 开展课外读物负面清单管理的具体实施举措方案
- 2025年云南中烟工业限责任公司招聘420人高频重点提升(共500题)附带答案详解
- 2025-2030年中国洗衣液市场未来发展趋势及前景调研分析报告
- 2024解析:第三章物态变化-基础练(解析版)
- 2023年江苏省南京市中考化学真题
- 供电副所长述职报告
- 校园欺凌问题成因及对策分析研究论文
- 技术支持资料投标书
- 老年人意外事件与与预防
- 预防艾滋病、梅毒和乙肝母婴传播转介服务制度
- 《高速铁路客运安全与应急处理》课程标准
评论
0/150
提交评论