




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届浙江省舟山市数学高二下期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知定义在R上的偶函数(其中e为自然对数的底数),记,,,则a,b,c的大小关系是()A. B. C. D.2.一车间为规定工时定额,需要确定加工零件所花费的时间,为此进行了4次试验,测得的数据如下零件数(个)2345加工时间(分钟)264954根据上表可得回归方程,则实数的值为()A.37.3 B.38 C.39 D.39.53.某校从6名学生干部(其中女生4人,男生2人)中选3人参加学校的汇演活动,在女生甲被选中的情况下,男生乙也被选中的概率为()A. B. C. D.4.已知i是虚数单位,若复数z满足,则=A.-2i B.2i C.-2 D.25.若,;,则实数,,的大小关系为()A. B.C. D.6.已知两变量x和y的一组观测值如下表所示:x234y546如果两变量线性相关,且线性回归方程为,则=()A.- B.-C. D.7.已知,,,则的大小关系为()A. B.C. D.8.设是一个三次函数,为其导函数.图中所示的是的图像的一部分.则的极大值与极小值分别是().A.与 B.与 C.与 D.与9.函数的单调递增区间是()A. B. C.(1,4) D.(0,3)10.如果函数y=f(x)的图象如图所示,那么导函数的图象可能是A. B. C. D.11.某地举办科技博览会,有个场馆,现将个志愿者名额分配给这个场馆,要求每个场馆至少有一个名额且各场馆名额互不相同的分配方法共有()种A. B. C. D.12.某三棱锥的三视图如图所示,则该三棱锥的体积为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知平面向量满足,,则的最大值是____.14.“”是“函数是上的奇函数”的__________条件.(填“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”中一个)15.底面是直角三角形的直棱柱的三视图如图,网格中的每个小正方形的边长为1,则该棱柱的表面积是________16.若,且,那么__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线,,,其中与的交点为P.(1)求点P到直线的距离;(2)求过点P且与直线的夹角为的直线方程.18.(12分)如图,在圆心角为,半径为的扇形铁皮上截取一块矩形材料,其中点为圆心,点在圆弧上,点在两半径上,现将此矩形铁皮卷成一个以为母线的圆柱形铁皮罐的侧面(不计剪裁和拼接损耗),设矩形的边长,圆柱形铁皮罐的容积为.(1)求圆柱形铁皮罐的容积关于的函数解析式,并指出该函数的定义域;(2)当为何值时,才使做出的圆柱形铁皮罐的容积最大?最大容积是多少?(圆柱体积公式:,为圆柱的底面枳,为圆柱的高)19.(12分)现有男选手名,女选手名,其中男女队长各名.选派人外出比赛,在下列情形中各有多少种选派方法?(结果用数字表示)(1)男选手名,女选手名;(2)至少有名男选手;(3)既要有队长,又要有男选手.20.(12分)为了解国产奶粉的知名度和消费者的信任度,某调查小组特别调查记录了某大型连锁超市年与年这两年销售量前名的五个奶粉的销量(单位:罐),绘制出如下的管状图:(1)根据给出的这两年销量的管状图,对该超市这两年品牌奶粉销量的前五强进行排名(由高到低,不用说明理由);(2)已知该超市年奶粉的销量为(单位:罐),以,,这年销量得出销量关于年份的线性回归方程为(,,年对应的年份分别取),求此线性回归方程并据此预测年该超市奶粉的销量.相关公式:.21.(12分)已知函数,(1)求在区间上的极小值和极大值;(2)求在(为自然对数的底数)上的最大值.22.(10分)在正四棱锥P-BCD中,正方形ABCD的边长为32,高OP=6,E是侧棱PD上的点且PE=13PD,F是侧棱PA上的点且PF=12(1)求平面EFG的一个法向量n;(2)求直线AG与平面EFG所成角θ的大小;(3)求点A到平面EFG的距离d.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
先根据函数奇偶性,求出,得到,再由指数函数单调性,以及余弦函数单调性,得到在上单调递增,进而可得出结果.【题目详解】因为是定义在R上的偶函数,所以,即,即,所以,解得:,所以,当时,,因为是单调递增函数,在上单调递减,所以在上单调递增,又,所以,即.故选:A.【题目点拨】本题主要考查由函数单调比较大小,由函数奇偶性求参数,熟记函数单调性与奇偶性即可,属于常考题型.2、C【解题分析】
求出,代入回归方程,即可得到实数的值。【题目详解】根据题意可得:,,根据回归方程过中心点可得:,解得:;故答案选C【题目点拨】本题主要考查线性回归方程中参数的求法,熟练掌握回归方程过中心点是关键,属于基础题。3、B【解题分析】
先求出女生甲被选中的情况下的基本事件总数,再求出在女生甲被选中的情况下,男生乙也被选中包含的基本事件个数为,结合条件概率的计算方法,可得.【题目详解】女生甲被选中的情况下,基本事件总数,在女生甲被选中的情况下,男生乙也被选中包含的基本事件个数为,则在女生甲被选中的情况下,男生乙也被选中的概率为.故选B.【题目点拨】本题考查了条件概率的求法,考查了学生的计算求解能力,属于基础题.4、A【解题分析】由得,即,所以,故选A.【名师点睛】复数代数形式的加减乘除运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化.注意下面结论的灵活运用:(1)(1±i)2=±2i;(2)=i,=-i.5、A【解题分析】
根据指数函数与对数函数的性质,分别确定,,的范围,即可得出结果.【题目详解】因为,,,所以.故选A【题目点拨】本题主要考查对数与指数比较大小的问题,熟记对数函数与指数函数的性质即可,属于常考题型.6、D【解题分析】
先计算==3,==5,代入方程即可.【题目详解】==3,==5,代入线性回归方程可得5=3+,解之得=.故选D【题目点拨】线性回归直线必过样本中心.7、A【解题分析】
利用等中间值区分各个数值的大小.【题目详解】,,,故,所以.故选A.【题目点拨】本题考查大小比较问题,关键选择中间量和函数的单调性进行比较.8、C【解题分析】
易知,有三个零点因为为二次函数,所以,它有两个零点由图像易知,当时,;当时,,故是极小值类似地可知,是极大值.故答案为:C9、B【解题分析】
求出函数的导数,在解出不等式可得出所求函数的单调递增区间.【题目详解】,,解不等式,解得,因此,函数的单调递增区间是,故选B.【题目点拨】本题考查函数单调区间的求解,一般是先求出导数,然后解出导数不等式,将解集与定义域取交集得出单调区间,但单调区间不能合并,考查计算能力,属于中等题.10、A【解题分析】试题分析:由原函数图像可知函数单调性先增后减再增再减,所以导数值先正后负再正再负,只有A正确考点:函数导数与单调性及函数图像11、A【解题分析】
“每个场馆至少有一个名额的分法”相当于在24个名额之间的23个空隙中选出两个空隙插入分隔符号,则有种方法,再列举出“至少有两个场馆的名额数相同”的分配方法,进而得到满足题中条件的分配方法.【题目详解】每个场馆至少有一个名额的分法为种,至少有两个场馆的名额相同的分配方法有(1,1,22),(2,2,20),(3,3,18),(4,4,16),(5,5,14),(6,6,12),(7,7,10),(8,8,8),(9,9,6),(10,10,4),(11,11,2),再对场馆分配,共有种,所以每个场馆至少有一个名额且各校名额互不相同的分配方法共有种,故选A.【题目点拨】该题考查的是有关形同元素的分配问题,涉及到的知识点有隔板法,在解题的过程中,注意对至少两个场馆分配名额相同的要去除.12、A【解题分析】
由正视图和侧视图得三棱锥的高,由俯视图得三棱锥底面积,再利用棱锥的体积公式求解即可.【题目详解】由三棱锥的正视图和侧视图得三棱锥的高,由俯视图得三棱锥底面积,所以该三棱锥的体积.故选:A【题目点拨】本题主要考查三视图和棱锥的体积公式,考查学生的空间想象能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、2【解题分析】
根据已知条件可设出的坐标,设,,,利用向量数量积的坐标表示,即求的最大值,根据,可得出的轨迹方程,从而求出最大值.【题目详解】设,,,,点是以为圆心,1为半径的圆,,,的最大值是2.故填:2.【题目点拨】本题考查了向量数量积的应用,以及轨迹方程的综合考查,属于中档题型,本题的关键是根据条件设出坐标,转化为轨迹问题.14、必要不充分【解题分析】分析:先举反例说明充分性不成立,再根据奇函数性质推导,说明必要性成立.详解:因为满足,但不是奇函数,所以充分性不成立,因为函数是上的奇函数,所以必要性成立.因此“”是“函数是上的奇函数”的必要不充分条件.,点睛:充分、必要条件的三种判断方法.1.定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.2.等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.15、【解题分析】
根据三视图,画出空间几何体,即可求得表面积.【题目详解】根据三视图可知该几何体为三棱柱,画出空间结构体如下:该三棱柱的高为2,上下底面为等腰直角三角形,腰长为所以上下底面的面积为侧面积为所以该三棱柱的表面积为故答案为:【题目点拨】本题考查由三视图还原空间结构体,棱柱表面积的求法,属于基础题.16、1【解题分析】分析:根据条件中所给的二项式定理的展开式,写出a和b的值,根据这两个数字的比值,写出关于n的等式,即方程,解方程就可以求出n的值.详解:∵(x+1)n=xn+…+ax3+bx2+cx+1(n∈N*),∴a=Cn3,b=Cn2,∵a:b=3:1,∴a:b=Cn3:Cn2=3:1,∴:=3:1,∴n=1.故答案为:1点睛:本题是考查二项式定理应用,考查二项式定理的二项式系数,属于基础题,解题的关键是利用通项公式确定a与b的值.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)或【解题分析】
(1)先解方程组得点P坐标,再根据点到直线距离得结果;(2)根据夹角公式求所求直线斜率,再根据点斜式得结果.【题目详解】(1)由得点P到直线的距离为(2)设所求直线斜率为,所以或,因此所求直线方程为或即或【题目点拨】本题考查点到直线距离、直线交点以及直线夹角公式,考查基本分析求解能力,属中档题.18、(1);(2),.【解题分析】分析:(1)先利用勾股定理可得OA,根据周长公式得半径,再根据圆柱体积公式求V(x),最后根据实际意义确定定义域,(2)先求导数,再求导函数零点,列表分析导函数符号变化规律,确定函数单调性,进而得函数最值.详解:(1)连接OB,在Rt△OAB中,由AB=x,利用勾股定理可得OA=,设圆柱底面半径为r,则=2πr,即4=3600-,所以V(x)=π=π··x=,即铁皮罐的容积为V(x)关于x的函数关系式为V(x)=,定义域为(0,60).(2)由V′(x)==0,x∈(0,60),得x=20.列表如下:x(0,20)20(20,60)V′(x)+0-V(x)↗极大值V(20)↘所以当x=20时,V(x)有极大值,也是最大值为.答:当x为20cm时,做出的圆柱形铁皮罐的容积最大,最大容积是.点睛:利用导数解答函数最值的一般步骤:第一步:利用或求单调区间;第二步:解得实根;第三步:比较实根同区间端点的大小;第四步:求极值;第五步:比较极值同端点值的大小.19、(1)30;(2)65;(3)51.【解题分析】
(1)先选两名男选手,再选两名女选手,乘法原理得到答案.(2)用总的选择方法减去全是女选手的方法得到答案.(3)分为有男队长和没有男队长两种情况,相加得到答案.【题目详解】(1)第一步:选名男运动员,有种选法.第二步:选名女运动员,有种选法.共有(种)选法.(2)至少有名男选手”的反面为“全是女选手”.从人中任选人,有种选法,其中全是女选手的选法有种.所以“至少有名女运动员”的选法有(种).(3)当有男队长时,其他人选法任意,共有种选法.不选男队长时,必选女队长,共有种选法,其中不含男选手的选法有种,所以不选男队长时,共有种选法.故既要有队长,又要有男选手的选法有(种).【题目点拨】本题考查了排列组合问题的计算,意在考查学生的计算能力和解决问题的能力.20、(1)前五强排名为:,,,,;(2)回归直线为:;预测年该超市奶粉的销量为罐.【解题分析】
(1)根据管状图,可求得五种奶粉两年的销量和,从而按照从多到少进行排列即可;(2)根据已知数据,利用最小二乘法求得回归直线;代入,即可求得预测值.【题目详解】(1)两年销量:;两年销量:;两年销量:;两年销量:;两年销量:前五强排名为:,,,,(2)由题意得:,;;,回归直线为:当时,预测年该超市奶粉的销量为:罐【题目点拨】本题考查统计图表的读取、最小二乘法求解回归直线、根据回归直线求解预估值的问题,考查运算和求解能力.21、(1)极小值为,极大值为.(2)答案不唯一,具体见解析【解题分析】
(1)对三次函数进行求导,解导数不等式,画出表格,从而得到极值;(2)由(1)知函数的性质,再对进行分类讨论,求在的性质,比较两段的最大值,进而得到函数的最大值.【题目详解】(1)当时,,令,解得或.当x变化时,,的变化情况如下表:x0-0+0-递减极小值递增极大值递减故当时,函数取得极小值为,当时,函数取值极大值为.(2)①
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025山西建筑安全员-C证考试(专职安全员)题库及答案
- Module 7 单元整体(教学设计)-2024-2025学年外研版(三起)英语四年级上册
- Photoshop数字影像处理案例教程 习题及答案 Chapter 4 产品瑕疵处理
- 全球地理热点话题分析试题及答案
- 2024年计算机二级考试实例试题及答案
- 2024年预算员释放潜能试题及答案
- 河北省石家庄市井陉矿区贾庄镇学区贾庄中学八年级地理上册 2.1 地形和地势教学实录(1) 新人教版
- 从容应对陪诊师考试的试题及答案
- 2025辽宁省建筑安全员B证考试题库及答案
- 投资咨询工程师信息获取试题及答案
- 医院危化品知识培训课件
- 儿童营养及营养性疾病
- 专业设置可行性报告
- QC080000培训讲义课件
- 病历书写规范细则(2024年版)
- 华南理工大学《统计学》2022-2023学年第一学期期末试卷
- GB/T 29468-2024洁净室及相关受控环境围护结构夹芯板
- 炉衬材料与结构的改进
- DB11-238-2021 车用汽油环保技术要求
- 2024年湖南省高考化学试卷真题(含答案解析)
- 《永久基本农田调整划定工作方案》
评论
0/150
提交评论