河北省廊坊市六校联考2024届数学高二下期末统考模拟试题含解析_第1页
河北省廊坊市六校联考2024届数学高二下期末统考模拟试题含解析_第2页
河北省廊坊市六校联考2024届数学高二下期末统考模拟试题含解析_第3页
河北省廊坊市六校联考2024届数学高二下期末统考模拟试题含解析_第4页
河北省廊坊市六校联考2024届数学高二下期末统考模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省廊坊市六校联考2024届数学高二下期末统考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设数列的前项和为,若,且,则()A.2019 B. C.2020 D.2.杨辉三角,是二项式系数在三角形中的一种几何排列.在欧洲,这个表叫做帕斯卡三角形,帕斯卡(1623-1662)是在1654年发现这一规律的.我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,这是我国数学史上的一个伟大成就.如图所示,在“杨辉三角”中,去除所有为1的项,依次构成数列,则此数列前135项的和为()A. B. C. D.3.执行如图所示的程序框图,若输出的,则输入的()A.-4 B.-7 C.-22 D.-324.下列命题中,真命题是()A. B.C.的充要条件是 D.是的充分条件5.根据党中央关于“精准”脱贫的要求,我市某农业经济部门决定派出五位相关专家对三个贫困地区进行调研,每个地区至少派遣一位专家,其中甲、乙两位专家需要派遣至同一地区,则不同的派遣方案种数为A.18 B.24 C.28 D.366.下列函数中,既是偶函数,又在区间上单调递减的函数是()A. B. C. D.7.已知定义在上的函数在上单调递减,且是偶函数,不等式对任意的恒成立,则实数的取值范围是()A. B. C. D.8.在复平面内,复数对应的点位于()A.第一象限 B.第二象限C.第三象限 D.第四象限9.如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的,分别为63,98,则输出的()A.9 B.3 C.7 D.1410.若随机变量,其均值是80,标准差是4,则和的值分别是()A.100,0.2 B.200,0.4 C.100,0.8 D.200,0.611.2只猫把5只老鼠捉光,不同的捉法有()种.A. B. C. D.12.命题的否定是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某个游戏中,一个珠子按如图所示的通道,由上至下的滑下,从最下面的六个出口出来,规定猜中者为胜,如果你在该游戏中,猜得珠子从出口3出来,那么你取胜的概率为_______.14.从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人,组成4人服务队,要求服务队中至少有1名女生,共有__________种不同的选法.(用数字作答)15.设实数满足,则的最小值为______16.已知的外接圆半径为1,,点在线段上,且,则面积的最大值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月,两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中,两种支付方式都不使用的有5人,样本中仅使用和仅使用的学生的支付金额分布情况如下:交付金额(元)支付方式大于2000仅使用18人9人3人仅使用10人14人1人(Ⅰ)从全校学生中随机抽取1人,估计该学生上个月,两种支付方式都使用的概率;(Ⅱ)从样本仅使用和仅使用的学生中各随机抽取1人,以表示这2人中上个月支付金额大于1000元的人数,求的分布列和数学期望;18.(12分)在平面直角坐标系中,直线的参数方程为(为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,已知圆经过极点,且其圆心的极坐标为.(1)求圆的极坐标方程;(2)若射线分别与圆和直线交于点,(点异于坐标原点),求线段的长.19.(12分)某抛掷骰子游戏中,规定游戏者可以有三次机会抛掷一颗骰子,若游戏者在前两次抛掷中至少成功一次才可以进行第三次抛掷,其中抛掷骰子不成功得0分,第1次成功得3分,第2次成功得3分,第3次成功得4分.游戏规则如下:抛掷1枚骰子,第1次抛掷骰子向上的点数为奇数则记为成功,第2次抛掷骰子向上的点数为3的倍数则记为成功,第3次抛掷骰子向上的点数为6则记为成功.用随机变量表示该游戏者所得分数.(1)求该游戏者有机会抛掷第3次骰子的概率;(2)求随机变量的分布列和数学期望.20.(12分)如图,在四棱锥中,平面,四边形为正方形,,、分别是、中点.(1)证明:(2)求平面与平面所成锐二面角的值.21.(12分)设,其中,,与无关.(1)若,求的值;(2)试用关于的代数式表示:;(3)设,,试比较与的大小.22.(10分)已知复数为虚数单位.(1)若复数对应的点在第四象限,求实数的取值范围;(2)若,求的共轭复数.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】

用,代入已知等式,得,可以变形为:,说明是等差数列,故可以求出等差数列的通项公式,最后求出的值.【题目详解】因为,所以,所以数列是以为公差的等差数列,,所以等差数列的通项公式为,故本题选D.【题目点拨】本题考查了公式的应用,考查了等差数列的判定义、以及等差数列的通项公式.2、A【解题分析】

利用n次二项式系数对应杨辉三角形的第n+1行,然后令x=1得到对应项的系数和,结合等比数列和等差数列的公式进行转化求解即可.【题目详解】n次二项式系数对应杨辉三角形的第n+1行,例如(x+1)2=x2+2x+1,系数分别为1,2,1,对应杨辉三角形的第3行,令x=1,就可以求出该行的系数之和,第1行为20,第2行为21,第3行为22,以此类推即每一行数字和为首项为1,公比为2的等比数列,则杨辉三角形的前n项和为Sn2n﹣1,若去除所有的为1的项,则剩下的每一行的个数为1,2,3,4,……,可以看成一个首项为1,公差为1的等差数列,则Tn,可得当n=15,在加上第16行的前15项时,所有项的个数和为135,由于最右侧为2,3,4,5,……,为首项是2公差为1的等差数列,则第16行的第16项为17,则杨辉三角形的前18项的和为S18=218﹣1,则此数列前135项的和为S18﹣35﹣17=218﹣53,故选:A.【题目点拨】本题主要考查归纳推理的应用,结合杨辉三角形的系数与二项式系数的关系以及等比数列等差数列的求和公式是解决本题的关键,综合性较强,难度较大.3、A【解题分析】

模拟执行程序,依次写出每次循环得到的S,i的值,当i=6时不满足条件i<6,退出循环,输出S的值为S+1﹣9+16﹣25=﹣18,从而解得S的值.【题目详解】解:由题意,模拟执行程序,可得i=2,满足条件i<6,满足条件i是偶数,S=S+1,i=3满足条件i<6,不满足条件i是偶数,S=S+1﹣9,i=1满足条件i<6,满足条件i是偶数,S=S+1﹣9+16,i=5满足条件i<6,不满足条件i是偶数,S=S+1﹣9+16﹣25,i=6不满足条件i<6,退出循环,输出S的值为S+1﹣9+16﹣25=﹣18,故解得:S=﹣1.故选A.点睛:本题主要考查了循环结构的程序框图,模拟执行程序,正确得到循环结束时S的表达式是解题的关键,属于基础题.4、D【解题分析】A:根据指数函数的性质可知恒成立,所以A错误.

B:当时,,所以B错误.

C:若时,满足,但不成立,所以C错误.D:则,由充分必要条件的定义,,是的充分条件,则D正确.

故选D.5、D【解题分析】分析:按甲乙两人所派地区的人数分类,再对其他人派遣。详解:类型1:设甲、乙两位专家需要派遣的地区有甲乙两人则有,另外3人派往2个地区,共有18种。类型2:设甲、乙两位专家需要派遣的地区有甲乙丙三人则有,另外2人派往2个地区,共有18种。综上一共有36种,故选D点睛:有限制条件的分派问题,从有限制条件的入手,一般采用分步计数原理和分类计数原理,先分类后分步。6、B【解题分析】

根据函数单调性和奇偶性的性质分别对选项进行判断即可【题目详解】对于A,为奇函数,在区间为单调增函数,不满足题意;对于B,为偶函数,在区间上为单调递减的函数,故B满足题意;对于C,为偶函数,在区间上为周期函数,故C不满足题意;对于D,为偶函数,在区间为单调增函数,故D不满足题意;故答案选B【题目点拨】本题主要考查函数奇偶性和单调性的判断,要求熟练掌握常见函数的奇偶性和单调性的性质.7、A【解题分析】

根据是偶函数可以得出函数的对称轴,再根据函数在上单调递减可以得出函数在上的单调区间,从而解出不等式对任意的恒成立时的取值范围.【题目详解】是偶函数,所以得出函数的对称轴为,又因为函数在上单调递减,所以在上单调递增.因为,所以.因为不等式对任意的恒成立,所以.选择A【题目点拨】本题主要考查了函数的对称轴和奇偶性的综合问题,在解决此类题目时要搞清楚每一个条件能得出什么结论,把这些结论综合起来即得出结果.属于较难的题目.8、A【解题分析】试题分析:,对应的点,因此是第一象限.考点:复数的四则运算.9、C【解题分析】由,不满足,则变为,由,则变为,由,则,由,则,由,则,由,则,由,退出循环,则输出的值为,故选C.10、C【解题分析】

根据随机变量符合二项分布,根据二项分布的期望和方差的公式和条件中所给的期望和方差的值,得到关于和的方程组,解方程组得到要求的两个未知量.【题目详解】∵随机变量,其均值是80,标准差是4,∴由,∴.故选:C.【题目点拨】本题主要考查分布列和期望的简单应用,通过解方程组得到要求的变量,这与求变量的期望是一个相反的过程,但是两者都要用到期望和方差的公式.11、B【解题分析】分析:利用乘法分步计数原理解决即可.详解:由于每只猫捉老鼠的数目不限,因此每一只老鼠都可能被这2只猫中其中一只捉住,由分步乘法计数原理,得共有不同的捉法有种.故选:B.点睛:(1)利用分步乘法计数原理解决问题要按事件发生的过程合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.(2)分步必须满足两个条件:一是步骤互相独立,互不干扰;二是步与步确保连续,逐步完成.12、B【解题分析】试题分析:全称命题的否定是特称命题,所以:,故选B.考点:1.全称命题;2.特称命题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

从顶点到3总共有5个岔口,共有10种走法,每一岔口走法的概率都是,二项分布的概率计算公式,即可求解.【题目详解】由题意,从顶点到3的路线图单独画出来,如图所示,可得从顶点到3总共有种走法,其中每一岔口走法的概率都是,所以珠子从出口3出来的概率为.【题目点拨】本题主要考查了二项分布的一个模型,其中解答中认真审题,合理利用二项分布的概率计算公式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.14、660【解题分析】

第一类,先选女男,有种,这人选人作为队长和副队有种,故有种;第二类,先选女男,有种,这人选人作为队长和副队有种,故有种,根据分类计数原理共有种,故答案为.15、-3【解题分析】

作出不等式组对应的平面区域,设,利用目标函数的几何意义,利用数形结合确定的最小值,得到答案.【题目详解】由题意,画出约束条件所对应的平面区域,如图所示,设,则,当直线过点A时,直线在轴上的截距最大,此时目标函数取得最小值,由,解得,所以目标函数的最小值为.【题目点拨】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.16、【解题分析】

由所以可知为直径,设,求导得到面积的最大值.【题目详解】由所以可知为直径,所以,设,则,在中,有,,所以的面积,.方法一:(导数法),所以当时,,当时,,所以在上单调递增,在上单调递减,所以当时,的面积的最大值为.方法二:(均值不等式),因为.当且仅当,即时等号成立,即.【题目点拨】本题考查了面积的最大值问题,引入参数是解题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)见解析,1【解题分析】

(Ⅰ)根据题意先计算出上个月,两种支付方式都使用的学生人数,再结合古典概型公式计算即可;(Ⅱ)由题求出使用两种支付方式金额不大于1000的人数和金额大于1000的人数所占概率,再结合相互独立事件的概率公式计算即可【题目详解】(Ⅰ)由题意可知,两种支付方式都使用的人数为:人,则:该学生上个月,两种支付方式都使用的概率.(Ⅱ)由题意可知,仅使用支付方法的学生中,金额不大于1000的人数占,金额大于1000的人数占,仅使用支付方法的学生中,金额不大于1000的人数占,金额大于1000的人数占,且可能的取值为0,1,1.,,,的分布列为:011其数学期望:.【题目点拨】本题考查概率的简单计算,离散型随机变量的分布列和数学期望,属于中档题18、(1);(2)【解题分析】

(1)将圆心极坐标转化为直角坐标,可得圆是以为圆心,半径为2的圆,写出标准方程,,再转化成极坐标方程即可(2)将代入可求得,再根据直线的参数方程进行消参,得到普通方程,再将普通方程转化为极坐标方程,算出,可求得答案【题目详解】解:(1)圆是以为圆心,半径为2的圆.其方程是,即,可得其极坐标方程为,即;(2)将代入得,直线的普通方程为,其极坐标方程是,将代入得,故.【题目点拨】对于圆的普通方程和参数方程及极坐标方程,应熟练掌握,平时应熟记四种极坐标方程及对应的普通方程:,做题时才能游刃有余,本题第二问巧妙地运用了极径来求解长度问题,体现了极坐标处理解析几何问题的优越性19、(1)(2)见解析【解题分析】分析:⑴该游戏者抛掷骰子成功的概率分别为、、,该游戏者有机会抛掷第3次骰子为事件.则;(2)由题意可知,的可能取值为、、、、,分别求出,,,,得到的分布列及数学期望.详解:⑴该游戏者抛掷骰子成功的概率分别为、、,该游戏者有机会抛掷第3次骰子为事件.则;答:该游戏者有机会抛掷第3次骰子的概率为(2)由题意可知,的可能取值为、、、、,,,,,,所以的分布列为所以的数学期望点睛:本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意互斥事件概率加法公式的合理运用.20、(1)证明见解析;(2).【解题分析】

(1)要证,可证平面,利用线面垂直即可得到线线垂直.(2)建立空间直角坐标系

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论