版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省南通市通州海安2024届数学高二下期末联考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.从装有3个白球,4个红球的箱子中,随机取出了3个球,恰好是2个白球,1个红球的概率是()A. B. C. D.2.已知双曲线的左、右焦点分别为、,过作垂直于实轴的弦,若,则的离心率为()A. B. C. D.3.在等差数列中,,,则的前10项和为()A.-80 B.-85 C.-88 D.-904.在的展开式中,记项的系数为,则+++=()A.45 B.60 C.120 D.2105.已知集合,或,则()A. B.C. D.6.若函数在区间上是减函数,则实数的取值范围是()A. B. C. D.7.设实数a=log23,b=A.a>b>c B.a>c>b C.b>a>c D.b>c>a8.经过伸缩变换后所得图形的焦距()A. B. C.4 D.69.函数为偶函数,且在单调递增,则的解集为A. B.或C. D.或10.若函数f(x)=(a>0且a≠1)在(-∞,+∞)上既是奇函数又是增函数,则g(x)=的图象是()A. B. C. D.11.已知复数,则复数的模为()A.2 B. C.1 D.012.下列命题错误的是A.若直线平行于平面,则平面内存在直线与平行B.若直线平行于平面,则平面内存在直线与异面C.若直线平行于平面,则平面内存在直线与垂直D.若直线平行于平面,则平面内存在直线与相交二、填空题:本题共4小题,每小题5分,共20分。13.若对任意,都有恒成立,则实数的取值范围是_______________.14.若,则__________.15.售后服务人员小张、小李、小王三人需要拜访三个客户完成售后服务,每人只拜访一个客户,设事件“三个人拜访的客户各不相同”,“小王独自去拜访一个客户”,则概率等于_________.16.设关于x,y的不等式组表示的平面区域为.记区域上的点与点距离的最小值为,若,则的取值范围是__________;三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.证明:;已知,证明:.18.(12分)已知全集,集合,.(1)若,求;(2)若,求的取值范围.19.(12分)在中,角所对的边分别是,已知.(1)求;(2)若,且,求的面积.20.(12分)如图,正四棱柱的底面边长,若异面直线与所成角的大小为,求正四棱柱的体积.21.(12分)在二项式的展开式中,前三项系数的绝对值成等差数列.(1)求展开式中二项式系数最大的项;(2)求展开式中所有有理项的系数之和.22.(10分)已知时,函数,对任意实数都有,且,当时,(1)判断的奇偶性;(2)判断在上的单调性,并给出证明;(3)若且,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】分析:根据古典概型计算恰好是2个白球1个红球的概率.详解:由题得恰好是2个白球1个红球的概率为.故答案为:C.点睛:(1)本题主要考查古典概型,意在考查学生对这些知识的掌握水平.(2)古典概型的解题步骤:①求出试验的总的基本事件数;②求出事件A所包含的基本事件数;③代公式=.2、C【解题分析】
由题意得到关于a,c的齐次式,然后求解双曲线的离心率即可.【题目详解】由双曲线的通径公式可得,由结合双曲线的对称性可知是等腰直角三角形,由直角三角形的性质有:,即:,据此有:,,解得:,双曲线中,故的离心率为.本题选择C选项.【题目点拨】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式;②只需要根据一个条件得到关于a,b,c的齐次式,结合b2=c2-a2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围).3、A【解题分析】
用待定系数法可求出通项,于是可求得前10项和.【题目详解】设的公差为,则,,所以,,前10项和为.【题目点拨】本题主要考查等差数列的通项公式,求和公式,比较基础.4、C【解题分析】
由题意依次求出x3y0,x2y1,x1y2,x0y3,项的系数,求和即可.【题目详解】(1+x)6(1+y)4的展开式中,含x3y0的系数是:=1.f(3,0)=1;含x2y1的系数是=60,f(2,1)=60;含x1y2的系数是=36,f(1,2)=36;含x0y3的系数是=4,f(0,3)=4;∴f(3,0)+f(2,1)+f(1,2)+f(0,3)=11.故选C.【题目点拨】本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力.5、C【解题分析】
首先解绝对值不等式,从而利用“并”运算即可得到答案.【题目详解】根据题意得,等价于,解得,于是,故答案为C.【题目点拨】本题主要考查集合与不等式的综合运算,难度不大.6、D【解题分析】
根据复合函数的单调性,同增异减,则,在区间上是增函数,再根据定义域则在区间上恒成立求解.【题目详解】因为函数在区间上是减函数,所以,在区间上是增函数,且在区间上恒成立.所以且,解得.故选:D【题目点拨】本题主要考查复合函数的单调性,还考查了理解辨析和运算求解的能力,属于中档题.7、A【解题分析】分析:利用指数函数、对数函数的单调性及中间量比较大小.详解:∵a=log23>log22=1,0<b=1312<(1c=log132∴a>b>c.故选A.点睛:利用指数函数对数函数及幂函数的性质比较实数或式子的大小,一方面要比较两个实数或式子形式的异同,底数相同,考虑指数函数增减性,指数相同考虑幂函数的增减性,当都不相同时,考虑分析数或式子的大致范围,来进行比较大小,另一方面注意特殊值0,1的应用,有时候要借助其“桥梁”作用,来比较大小.8、A【解题分析】
用,表示出,,代入原方程得出变换后的方程,从而得出焦距.【题目详解】由得,代入得,∴椭圆的焦距为,故选A.【题目点拨】本题主要考查了伸缩变换,椭圆的基本性质,属于基础题.9、D【解题分析】
根据函数的奇偶性得到,在单调递增,得,再由二次函数的性质得到,【题目详解】函数为偶函数,则,故,因为在单调递增,所以.根据二次函数的性质可知,不等式,或者,的解集为,故选D.【题目点拨】此题考查了函数的对称性和单调性的应用,对于抽象函数,且要求解不等式的题目,一般是研究函数的单调性和奇偶性,通过这些性质将要求的函数值转化为自变量的大小比较,直接比较括号内的自变量的大小即可.10、C【解题分析】本题考查指数型函数的奇偶性,单调性;对数函数的图像及图像的平移变换.因为是奇函数,所以恒成立,整理得:恒成立,所以则又函数在R上是增函数,所以于是函数的图像是由函数性质平移1个单位得到.故选C11、C【解题分析】
根据复数的除法运算求出,然后再求出即可.【题目详解】由题意得,∴.故选C.【题目点拨】本题考查复数的除法运算和复数模的求法,解题的关键是正确求出复数,属于基础题.12、D【解题分析】分析:利用空间中线线、线面间的位置关系求解.详解:A.若直线平行于平面,则平面内存在直线与平行,正确;B.若直线平行于平面,则平面内存在直线与异面,正确;C.若直线平行于平面,则平面内存在直线与垂直,正确,可能异面垂直;D.若直线平行于平面,则平面内存在直线与相交,错误,平行于平面,与平面没有公共点.故选D.点睛:本题主要考查命题的真假判断,涉及线面平行的判定和性质,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
根据()代入中求得的最大值,进而得到实数的取值范围。【题目详解】因为,所以(当且仅当时取等号);所以,即的最大值为,即实数的取值范围是;故答案为:【题目点拨】本题考查不等式恒成立问题的解题方法,解题关键是利用基本不等式求出的最大值,属于中档题。14、-32【解题分析】
通过对原式x赋值1,即可求得答案.【题目详解】令可得,故答案为-32.【题目点拨】本题主要考查二项式定理中赋值法的理解,难度不大.15、【解题分析】
是条件概率,,利用公式求解.【题目详解】根据题意有事件“三个人拜访的客户各不相同”,则,所以.故答案为:【题目点拨】本题考查了条件概率的求法、组合的性质,属于基础题.16、;【解题分析】
根据不等式组表示的平面区域,又直线过点,因此可对分类讨论,以求得,当时,是到直线的距离,在其他情况下,表示与可行域内顶点间的距离.分别计算验证.【题目详解】如图,区域表示在第一象限(含轴的正半轴),直线过点,表示直线的上方,当时,满足题意,当时,直线与轴正半轴交于点,当时,,当时,,满足题意,当时,,不满足题意,综上的取值范围是.故答案为.【题目点拨】本题考查二元一次不等式组表示的平面区域,解题关键是在求时要分类讨论.是直接求两点间的距离还是求点到直线的距离,这要区分开来.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、证明见解析;证明见解析.【解题分析】
(1),于是证明即可,左边可由所证得到;(2)即证,表示成含n的表达式,利用数学归纳法可证.【题目详解】令,则在上单调递增,在上单调递减.,即①当时,由①可得,即,即由可知②下面用数学归纳法证明当时,,结论成立;假设时,结论成立,即;当时,设,其中,则在上单调递增又,数列单调递增,故由归纳假设和中结论时结论成立,即结合②可得,即【题目点拨】本题主要考查利用导数证明不等式,数列与数学归纳法的运用,意在考查学生的分析能力,转化能力,计算能力,难度较大.18、(1);(2)【解题分析】
(1)分别求出和,再取交集,即可。(2)因为且恒成立,所以,解出即可。【题目详解】解:(1)若,则,所以或,又因为,所以。(2)由(1)得,,又因为,所以,解得。【题目点拨】本题考查了交、补集的混合运算,考查了利用集合间的关系求参数的取值问题,解答此题的关键是对集合端点值的取舍,是基础题.19、(Ⅰ);(Ⅱ).【解题分析】试题分析:利用正弦定理和余弦定理及三角形面积公式解斜三角形是高考高频考点,利用正弦定理和余弦定理进行边转角或角转边是常用的方法,本题利用正弦定理“边转角”后,得出角C,第二步利用余弦定理求出边a,c,再利用面积公式求出三角形的面积.试题解析:(1)由正弦定理,得,因为,解得,.(2)因为.由余弦定理,得,解得.的面积.【题目点拨】利用正弦定理和余弦定理及三角形面积公式解斜三角形是高考高频考点,利用正弦定理和余弦定理进行边转角或角转边是常用的方法,已知两边及其夹角求第三边或已知三边求任意角使用于心定理,已知两角及任意边或已知两边及一边所对的角借三角形用正弦定理,另外含经常利用三角形面积公式以及与三角形的内切圆半径与三角形外接圆半径发生联系,要灵活使用公式.20、16【解题分析】分析:由正四棱柱的性质得,从而,进而,由此能求出正四棱柱的体积.详解:∵∴为与所成角且∵,∴点睛:本题主要考查异面直线所成的角、正四棱柱的性质以及棱柱的体积的公式,是中档题,解题时要认真审题,注意空间思维能力的培养.求异面直线所成的角先要利用三角形中位线定理以及平行四边形找到异面直线所成的角.21、(1)(2)-【解题分析】
(1)由二项式定理展开式中的通项公式求出前三项,由前三项系数的绝对值成等差数列列方程即可求得,问题得解.(2)由,对赋值,使得的指数为正数即可求得所有理项,问题得解.【题目详解】(1)由二项式定理得展开式中第项为,所以前三项的系数的绝对值分别为1,,,由题意可得,整理得,解得或(舍去),则展开式中二项式系数最大的项是第五项,(2)因为,若该项为有理项,则是整数,又因为,所以或或,所以所有有理项的系数之和为【题目点拨】本题主要考查了二项式定理及其展开式的通项公式,考查分析能力,转化能力及计算能力,属于基础题.22、(1)偶函数.(2)见解析.(3).【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论