版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河北省邯郸市临漳第一中学高二数学第二学期期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.为第三象限角,,则()A. B. C. D.2.定义在上的函数满足,,则不等式的解集为()A. B. C. D.3.已知,则等于(
)A. B. C. D.4.已知,,则的最小值()A. B. C. D.5.下面是利用数学归纳法证明不等式(,且的部分过程:“……,假设当时,++…+,故当时,有,因为,故++…+,……”,则横线处应该填()A.++…++<,B.++…+,C.2++…++,D.2++…+,6.数学40名数学教师,按年龄从小到大编号为1,2,…40。现从中任意选取6人分成两组分配到A,B两所学校从事支教工作,其中三名编号较小的教师在一组,三名编号较大的教师在另一组,那么编号为8,12,28的数学教师同时入选并被分配到同一所学校的方法种数是A.220 B.440 C.255 D.5107.在数列中,若,,则()A.108 B.54 C.36 D.188.已知椭圆与双曲线有相同的焦点,点是曲线与的一个公共点,,分别是和的离心率,若,则的最小值为()A. B.4 C. D.99.已知椭圆,则以点为中点的弦所在直线方程为()A. B.C. D.10.若,且m,n,,则()A. B. C. D.11.已知向量||=,且,则()A. B. C. D.12.函数的图象大致是A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.除以5的余数是14.对于任意的实数,记为中的最小值.设函数,,函数,若在恰有一个零点,则实数的取值范围是____________.15.已知复数,则z的虚部为_____________;16.若点是曲线上任意一点,则点到直线的距离的最小值为____________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数.(1)解不等式;(2)求函数的最大值.18.(12分)已知函数f(x)=x3+ax2(1)求函数f(x)的解析式及单调区间;(2)求函数f(x)在区间-3,2的最大值与最小值.19.(12分)已知函数,.(1)若不等式对任意的恒成立,求实数的取值范围;(2)记表示中的最小值,若函数在内恰有一个零点,求实的取值范围.20.(12分)三个内角A,B,C对应的三条边长分别是,且满足.(1)求角的大小;(2)若,,求.21.(12分)已知的三个顶点为,为的中点.求:(1)所在直线的方程;(2)边上中线所在直线的方程;(3)边上的垂直平分线的方程.22.(10分)某商场举行优惠促销活动,顾客仅可以从以下两种优惠方案中选择一种,方案一:每满200元减50元;方案二:每满200元可抽奖一次.具体规则是依次从装有3个红球、l个白球的甲箱,装有2个红球、2个白球的乙箱,以及装有1个红球、3个白球的丙箱中各随机摸出1个球,所得结果和享受的优惠如下表:(注:所有小球仅颜色有区别)红球个数3210实际付款半价7折8折原价(1)若两个顾客都选择方案二,各抽奖一次,求至少一个人获得半价优惠的概率;(2)若某顾客购物金额为320元,用所学概率知识比较哪一种方案更划算?
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】分析:先由两角和的正切公式求出,再利用同角三角函数基本关系式进行求解.详解:由,得,由同角三角函数基本关系式,得,解得又因为为第三象限角,所以,则.点睛:1.利用两角和差公式、二倍角公式进行三角恒等变形时,要优先考虑用已知角表示所求角,如:、;2.利用同角三角函数基本关系式中的“”求解时,要注意利用角的范围或所在象限进行确定符号.2、B【解题分析】
由已知条件构造辅助函数g(x)=f(x)+lnx,求导,根据已知求得函数的单调区间,结合原函数的性质和函数值,即可的解集.【题目详解】令g(x)=f(x)+lnx(x>0),则g'(x)=,又函数满足,∴g'(x)=,g(x)在单调递增.∵,∴,∴当,,当,,∴当,则不等式成立.故选:B.【题目点拨】本题主要考查导数在研究函数中的应用和函数综合,一般采用构造函数法,求导后利用条件判断函数的单调性,再根据特殊值解出不等式所对应的区间即可,属于中等题.3、C【解题分析】分析:根据条件概率的计算公式,即可求解答案.详解:由题意,根据条件概率的计算公式,则,故选C.点睛:本题主要考查了条件概率的计算公式的应用,其中熟记条件概率的计算公式是解答的关键,着重考查了推理与运算能力.4、C【解题分析】∵向量,,当t=0时,取得最小值.故答案为.5、A【解题分析】
由归纳假设,推得的结论,结合放缩法,便可以得出结论.【题目详解】假设当时,++…+,故当时,++…++<,因为,++…+,故选A.【题目点拨】本题主要考查数学归纳法的步骤,以及放缩法的运用,意在考查学生的逻辑推理能力.6、D【解题分析】分析:根据题意,分析可得“编号为8,12,28的数学教师同时入选并被分配到同一所学校”,则除8,12,28之外的另外三人的编号必须都大于28或都小于8,则先分另外三人的编号必须“都大于28”或“都小于8”这两种情况讨论选出其他三人的情况,再将选出2组进行全排列,最后由分步计数原理计算可得答案.详解:根据题意,要确保“编号为8,12,28的数学教师同时入选并被分配到同一所学校”,则除8,12,28之外的另外三人的编号必须都大于28或都小于8,则分2种情况讨论选出的情况:①如果另外三人的编号都大于28,则需要在29—40的12人中,任取3人,有种情况;②如果另外三人的编号都小于8,则需要在1—7的7人中,任取3人,有种情况.即选出剩下3人有种情况,再将选出的2组进行全排列,有种情况,则编号为8,12,28的数学教师同时入选并被分配到同一所学校的方法种数是种.故选:D.点睛:本题考查排列组合的应用,解题的关键是分析如何确保“编号为8,12,28的数学教师同时入选并被分配到同一所学校”,进而确定分步,分类讨论的依据.7、B【解题分析】
通过,可以知道数列是公比为3的等比数列,根据等比数列的通项公式可以求出的值.【题目详解】因为,所以数列是公比为的等比数列,因此,故本题选B.【题目点拨】本题考查了等比数列的概念、以及求等比数列某项的问题,考查了数学运算能力.8、A【解题分析】
题意设焦距为2c,椭圆长轴长为2a1,双曲线实轴为2a2,令P在双曲线的右支上,由已知条件结合双曲线和椭圆的定义推出a12+a22=2c2,由此能求出4e12+e22的最小值.【题目详解】由题意设焦距为2c,椭圆长轴长为2a1,双曲线实轴为2a2,令P在双曲线的右支上,由双曲线的定义|PF1|﹣|PF2|=2a2,①由椭圆定义|PF1|+|PF2|=2a1,②又∵PF1⊥PF2,∴|PF1|2+|PF2|2=4c2,③①2+②2,得|PF1|2+|PF2|2=4a12+4a22,④将④代入③,得a12+a22=2c2,∴4e12+e22==++≥+2=.故选A.【题目点拨】在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.9、A【解题分析】
利用点差法求出直线的斜率,再利用点斜式即可求出直线方程.【题目详解】解:设以点为中点的弦与椭圆交于点,,,,则,,分别把点,的坐标代入椭圆方程得:,两式相减得:,,直线的斜率,以点为中点的弦所在直线方程为:,即,故选:.【题目点拨】本题主要考查了点差法解决中点弦问题,属于中档题.10、D【解题分析】
根据已知条件,运用组合数的阶乘可得:,再由二项式系数的性质,可得所要求的和.【题目详解】则故选:D【题目点拨】本题考查了组合数的计算以及二项式系数的性质,属于一般题.11、C【解题分析】
由平面向量模的运算可得:0,得,求解即可.【题目详解】因为向量||,所以0,又,所以2,故选C.【题目点拨】本题考查了平面向量模的运算,熟记运算性质是关键,属基础题.12、D【解题分析】
利用函数的奇偶性、特殊值判断函数图象形状与位置即可.【题目详解】函数y=是奇函数,所以选项A,B不正确;当x=10时,y=>0,图象的对应点在第一象限,D正确;C错误.故选D.【题目点拨】本题考查函数的图象的判断,一般利用函数的定义域、值域、奇偶性、单调性、对称性、特殊值等方法判断.二、填空题:本题共4小题,每小题5分,共20分。13、1【解题分析】试题分析:,它除以5余数为1.考点:二项式定理,整除的知识.14、或【解题分析】分析:函数可以看做由函数向上或向下平移得到,在同一个坐标系中画出和图象即可分析出来详解:如图,设,所以函数可以看做由函数向上或向下平移得到其中在上当有最小值所以要使得,若在恰有一个零点,满足或所以或点睛:函数问题是高考中的热点,也是难点,函数零点问题在选择题或者填空题中往往要数形结合分析比较容易,要能够根据函数变化熟练画出常见函数图象,对于不常见简单函数图象要能够利用导数分析出其图象,数形结合分析.15、-3【解题分析】
先由除法法则计算出,再写出它的虚部【题目详解】,其虚部为-3。故答案为:-3。【题目点拨】本题考查复数的除法运算,考查复数的概念,属于基础题。16、【解题分析】
因为点P是曲线上任意一点,则点P到直线的距离的最小值是过点P的切线与直线平行的时候,则,即点(1,1)那么可知两平行线间的距离即点(1,1)到直线的距离为三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)3【解题分析】
(1)利用零点分类讨论法解不等式.(2)先化成分段函数,再结合分段函数的图像即得其最大值.【题目详解】⑴①当x<-1时,;②当-1≤x≤2时,,;③当时,,;综上,不等式的解集为;⑵,由其图知,.【题目点拨】(1)本题主要考查零点讨论法解绝对值不等式,考查分段函数的最值,意在考查学生对这些知识的掌握水平和数形结合分析推理能力.(2)分类讨论是高中数学的一种重要思想,要注意小分类求交,大综合求并.18、(1)f(x)=x3+94x2-3x;f(x)单调增区间是-∞,-2,【解题分析】
(1)由题得f'-2=0f'12=0即a=【题目详解】(1)因为f(x)=x3+a由f'-2∴fxf'x令f'x>0⇒x>12或所以单调增区间是-∞,-2,12(2)由(1)可知,x-3,-2-2-2,11f'+0-0+f递增极大递减极小递增极小值f12而f-3可得fx【题目点拨】(1)本题主要考查利用导数研究函数的极值和最值,利用导数研究函数的单调区间,意在考查学生对这些知识的掌握水平和分析推理能力.(2)求函数在闭区间上的最值,只要比较极值和端点函数值的大小.19、(1);(2)【解题分析】
(1)利用分离参数,并构造新的函数,利用导数判断的单调性,并求最值,可得结果.(2)利用对的分类讨论,可得,然后判断函数单调性以及根据零点存在性定理,可得结果.【题目详解】(1)由,得,令,当时,,,;当时,,,,∴函数在上递减,在上递增,,,∴实数的取值范围是(2)①由(1)得当时,,,,函数在内恰有一个零点,符合题意②当时,i.若,,,故函数在内无零点ii.若,,,,不是函数的零点;iii.若时,,故只考虑函数在的零点,,若时,,∴函数在上单调递增,,,∴函数在上恰有一个零点若时,,∴函数在上单调递减,,∴函数在上无零点,若时,,,∴函数在上递减,在上递增,要使在上恰有一个零点,只需,.综上所述,实数的取值范围是.【题目点拨】本题考查函数导数的综合应用,难点在于对参数的分类讨论,考验理解能力以及对问题的分析能力,属难题.20、⑴(2)【解题分析】
⑴由正弦定理及,得,因为,所以;⑵由余弦定理,解得【题目详解】⑴由正弦定理得,由已知得,,因为,所以⑵由余弦定理,得即,解得或,负值舍去,所以【题目点拨】解三角形问题,常要求正确选择正弦定理或余弦定理对三角形中的边、角进行转换,再进行求解,同时注意三角形当中的边角关系,如内角和为180度等21、(1)x+1y-4=2;(1)1x-3y+6=2;(3)y=1x+1.【解题分析】
(1)直线方程的两点式,求出所在直线的方程;(1)先求BC的中点D坐标为(2,1),由直线方程的截距式求出AD所在直线方程;(3)求出直线BC的斜率,由两直线垂直的条件求出直线DE的斜率,再由斜截式求出DE的方程【题目详解】(1)因为直线BC经过B(1,1)和C(-1,3)两点,由两点式得BC的方程为,即x+1y-4=2.(1)设BC中点D的坐标为(x,y),则x==2,y==1.BC边的中线AD过点A(-3,2),D(2,1)两点,由截距式得AD所在直线方程为,即1x-3y+6=2.(3)BC的斜率,则BC的垂直平分线DE的斜率k1=1,由斜截式得直线DE的方程为y=1x+1.22、(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 16大家一起来合作(说课稿)-2023-2024学年道德与法治一年级下册统编版
- 福建省南平市文化武术学校高二语文下学期期末试题含解析
- 福建省南平市万安中学2020年高二英语下学期期末试卷含解析
- 2024版消防设计质量问题案例分析手册建筑机电专业
- 2025年度石油化工设备采购与施工安装合同3篇
- 双十一家居新机遇
- 15搭船的鸟 说课稿-2024-2025学年语文三年级上册统编版
- 劳动节视角下的媒体变革
- 2024新能源汽车动力电池供应与技术服务合同
- 迈向新学期模板
- 财务岗总结 财务工作者的个人总结
- 作文讲评原来我也拥有这么多
- 2023年副主任医师(副高)-普通外科学(副高)考试高频试题(历年真题)带答案
- 发电机检修作业指导书
- 薪酬与福利管理实务-习题答案 第五版
- 新华人寿保险管理信息系统案例分析
- 废旧物资处置申请表
- GB/T 37234-2018文件鉴定通用规范
- GB/T 31888-2015中小学生校服
- PPT中国地图素材(可修改颜色)
- 2023年深国交入学考试英语模拟试题
评论
0/150
提交评论