上海市罗店中学2024届数学高二第二学期期末经典试题含解析_第1页
上海市罗店中学2024届数学高二第二学期期末经典试题含解析_第2页
上海市罗店中学2024届数学高二第二学期期末经典试题含解析_第3页
上海市罗店中学2024届数学高二第二学期期末经典试题含解析_第4页
上海市罗店中学2024届数学高二第二学期期末经典试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市罗店中学2024届数学高二第二学期期末经典试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.对四组数据进行统计,获得如图所示的散点图,关于其相关系数的比较,正确的是()A.r2<r4<0<r3<r1 B.r4<r2<0<r1<r3C.r4<r2<0<r3<r1 D.r2<r4<0<r1<r32.已知函数与的图象如图所示,则函数()A.在区间上是减函数 B.在区间上是减函数C.在区间上减函数 D.在区间上是减函数3.若圆和圆相切,则等于()A.6 B.7 C.8 D.94.下列有关统计知识的四个命题正确的是()A.衡量两变量之间线性相关关系的相关系数越接近,说明两变量间线性关系越密切B.在回归分析中,可以用卡方来刻画回归的效果,越大,模型的拟合效果越差C.线性回归方程对应的直线至少经过其样本数据点中的一个点D.线性回归方程中,变量每增加一个单位时,变量平均增加个单位5.复数=A. B. C. D.6.已知函数,若方程有三个实数根,且,则的取值范围为()A. B.C. D.7.函数的最大值为()A. B. C. D.8.以下几个命题中:①线性回归直线方程恒过样本中心;②用相关指数可以刻画回归的效果,值越小说明模型的拟合效果越好;③随机误差是引起预报值和真实值之间存在误差的原因之一,其大小取决于随机误差的方差;④在含有一个解释变量的线性模型中,相关指数等于相关系数的平方.其中真命题的个数为()A.1个 B.2个 C.3个 D.4个9.为虚数单位,复数的共轭复数是()A. B. C. D.10.今年全国高考,某校有3000人参加考试,其数学考试成绩(,试卷满分150分),统计结果显示数学考试成绩高于130分的人数为100,则该校此次数学考试成绩高于100分且低于130分的学生人数约为()A.1300 B.1350 C.1400 D.145011.在Rt△ABC中,AC=1,BC=x,D是斜边AB的中点,将△BCD沿直线CD翻折,若在翻折过程中存在某个位置,使得CB⊥AD,则x的取值范围是()A. B. C. D.(2,4]12.已知、为双曲线C:的左、右焦点,点P在C上,∠P=,则P到x轴的距离为A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知命题p:不等式|x-1|>m的解集是R,命题q:f(x)=在区间(0,+∞)上是减函数,若命题“p或q”为真,命题“p且q”为假,则实数m的取值范围是________.14.函数的定义域为________.15.若随机变量,且,则______.16.已知函数,则_____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)设的最大值为,求的最小值;(2)在(1)的条件下,若,且,求的最大值.18.(12分)某公司生产一种产品,每年投入固定成本万元.此外,每生产件这种产品还需要增加投入万元.经测算,市场对该产品的年需求量为件,且当出售的这种产品的数量为(单位:百件)时,销售所得的收入约为(万元).(1)若该公司这种产品的年产量为(单位:百件),试把该公司生产并销售这种产品所得的年利润表示为年产量的函数;(2)当该公司的年产量为多少时,当年所得利润最大?最大为多少?19.(12分)已知的角、、所对的边分别是、、,设向量,,.(1)若,求证:为等腰三角形;(2)若,边长,角,求的面积.20.(12分)已知展开式中的倒数第三项的系数为45,求:(1)含的项;(2)系数最大的项.21.(12分)已知函数在处取得极值.(1)求的单调递增区间;(2)若关于的不等式至少有三个不同的整数解,求实数的取值范围.22.(10分)选修4-4:坐标系与参数方程以直角坐标系的原点为极点,轴非负半轴为极轴建立极坐标系,已知曲线的极坐标方程为.(1)求曲线的直角坐标方程;(2)若直线的参数方程为(为参数),设点,直线与曲线相交于两点,求的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

根据正相关和负相关以及相关系数的知识,选出正确选项.【题目详解】由散点图可知图(1)与图(3)是正相关,故r1>0,r3>0,图(2)与图(4)是负相关,故r2<0,r4<0,且图(1)与图(2)的样本点集中在一条直线附近,因此r2<r4<0<r3<r1.故选:A.【题目点拨】本小题主要考查散点图,考查相关系数、正相关和负相关的理解,属于基础题.2、B【解题分析】分析:求出函数的导数,结合图象求出函数的递增区间即可.详解:,

由图象得:时,,

故在递增,

故选:B.点睛:本题考查了函数的单调性问题,考查数形结合思想,考查导数的应用,是一道中档题.3、C【解题分析】

根据的圆标准方程求得两圆的圆心与半径,再根据两圆内切、外切的条件,分别求得的值并验证即可得结果.【题目详解】圆的圆心,半径为5;圆的圆心,半径为r.若它们相内切,则圆心距等于半径之差,即=|r-5|,求得r=18或-8,不满足5<r<10.若它们相外切,则圆心距等于半径之和,即=|r+5|,求得r=8或-18(舍去),故选C.【题目点拨】本题主要考查圆的方程以及圆与圆的位置关系,属于基础题.两圆半径为,两圆心间的距离为,比较与及与的大小,即可得到两圆的位置关系.4、A【解题分析】分析:利用“卡方”的意义、相关指数的意义及回归分析的适用范围,逐一分析四个答案的真假,可得答案.详解:A.衡量两变量之间线性相关关系的相关系数越接近,说明两变量间线性关系越密切,正确;B.在回归分析中,可以用卡方来刻画回归的效果,越大,模型的拟合效果越差,错误对分类变量与的随机变量的观测值来说,越大,“与有关系”可信程度越大;故B错误;C.线性回归方程对应的直线至少经过其样本数据点中的一个点,错误,回归直线可能不经过其样本数据点中的任何一个点;D.线性回归方程中,变量每增加一个单位时,变量平均增加个单位,错误,由回归方程可知变量每增加一个单位时,变量平均增加个单位.故选A.点睛:本题考查回归分析的意义以及注意的问题.是对回归分析的思想、方法小结.要结合实例进行掌握.5、A【解题分析】

根据复数的除法运算得到结果.【题目详解】复数=故答案为:A.【题目点拨】本题考查了复数的运算法则,考查了推理能力与计算能力,属于基础题,复数问题高考必考,常见考点有:点坐标和复数的对应关系,点的象限和复数的对应关系,复数的加减乘除运算,复数的模长的计算.6、B【解题分析】

先将方程有三个实数根,转化为与的图象交点问题,得到的范围,再用表示,令,利用导数法求的取值范围即可.【题目详解】已知函数,其图象如图所示:因为方程有三个实数根,所以,令,得,令,所以,所以,令,所以,令,得,当时,,当时,,所以当时,取得极小值.又,所以的取值范围是:.即的取值范围为.故选:B【题目点拨】本题主要考查函数与方程,导数与函数的单调性、极值最值,还考查了数形结合的思想和运算求解的能力,属于难题.7、B【解题分析】分析:直接利用柯西不等式求函数的最大值.详解:由柯西不等式得,所以(当且仅当即x=时取最大值)故答案为B.点睛:(1)本题主要考查柯西不等式求最值,意在考查学生对该知识的掌握水平和分析推理能力.(2)二元柯西不等式的代数形式:设均为实数,则,其中等号当且仅当时成立.8、C【解题分析】

由线性回归直线恒过样本中心可判断①,由相关指数的值的大小与拟合效果的关系可判断②,由随机误差和方差的关系可判断③,由相关指数和相关系数的关系可判断④.【题目详解】①线性回归直线方程恒过样本中心,所以正确.②用相关指数可以刻画回归的效果,值越大说明模型的拟合效果越好,所以错误.③随机误差是引起预报值和真实值之间存在误差的原因之一,其大小取决于随机误差的方差;所以正确.④在含有一个解释变量的线性模型中,相关指数等于相关系数的平方,所以正确.所以①③④正确.故选:C【题目点拨】本题考查线性回归直线方程和相关指数刻画回归效果、以及与相关系数的变形,属于基础题.9、B【解题分析】分析:直接利用复数的除法的运算法则化简求解即可.详解:则复数的共轭复数是.故选C.点睛:本题考查复数的除法的运算法则的应用,复数的基本概念,是基础题.10、C【解题分析】

根据正态分布的对称性计算,即【题目详解】100分是数学期望,由题意成绩高于130分的有100人,则低于70分的也有100人,70到130的总人数为3000-200=2800,因此成绩高于100分低于130分的人数为.故选C.【题目点拨】本题考查正态分布,解题关键是掌握正态分布曲线中的对称性,即若,则,.11、A【解题分析】

由,取的中点E,翻折前,连接,则,,翻折后,在图2中,此时,及,进而得到,由此可求解得取值范围,得到答案.【题目详解】由题意得,取的中点E,翻折前,在图1中,连接,则,翻折后,在图2中,此时,因为,所以平面,所以,又为的中点,所以,所以,在中,可得①;②;③,由①②③,可得.如图3,翻折后,当与在一个平面上,与交于,且,又,所以,所以,此时,综上可得的取值范围是,故选A.【题目点拨】本题主要考查了平面图形的翻折问题,以及空间几何体的结构特征的应用,其中解答中认真审题,合理利用折叠前后图形的线面位置关系是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.12、B【解题分析】本小题主要考查双曲线的几何性质、第二定义、余弦定理,以及转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力.不妨设点P在双曲线的右支,由双曲线的第二定义得,.由余弦定理得cos∠P=,即cos,解得,所以,故P到x轴的距离为.二、填空题:本题共4小题,每小题5分,共20分。13、[0,2)【解题分析】命题p:m<0,命题q:m<2.∵p与q一真一假,∴或解得0≤m<2.答案:[0,2).14、【解题分析】的定义域是,,故得到函数定义域为取交集,故答案为.15、4【解题分析】

由随机变量,且,可得的值,计算出,可得的值.【题目详解】解:由随机变量,且,可得,,,.故答案为:4.【题目点拨】本题主要考查离散型随机变量的期望与方差,熟悉二项分布的期望和方差的性质是解题的关键.16、【解题分析】分析:求出f′(1)=﹣1,再根据定积分法则计算即可.详解:∵f(x)=f'(1)x2+x+1,∴f′(x)=2f'(1)x+1,∴f′(1)=2f'(1)+1,∴f′(1)=﹣1,∴f(x)=﹣x2+x+1,∴=(﹣x3+x2+x)=.故答案为.点睛:这个题目考查了积分的应用,注意积分并不等于面积,解决积分问题的常见方法有:面积法,当被积函数为正时积分和面积相等,当被积函数为负时积分等于面积的相反数;应用公式直接找原函数的方法;利用被积函数的奇偶性得结果.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)2【解题分析】

运用不等式性质求出最小值根据不等式求最大值【题目详解】(1)∵,∴(当且仅当时取“=”号)∴(2)∵(当且仅当时取“=”号),(当且仅当时取“=”号),(当且仅当时取“=”号),∴(当且仅当时取“=”号)∴(当且仅当时取“=”号)∴的最大值为2.【题目点拨】本题考查了根据绝对值的应用求出不等式的解集,运用不等式性质求解是本题关键,注意题目中的转化。18、(1);(2)当年产量为件时,所得利润最大.【解题分析】分析:(1)利用销售额减去成本即可得到年利润关于年产量的函数解析式;(2)分别利用二次函数的性质以及函数的单调性,求得两段函数值的取值范围,从而可得结果.详解:(1)由题意得:;(2)当时,函数对称轴为,故当时,;当时,函数单调递减,故,所以当年产量为件时,所得利润最大.点睛:本题主要考查阅读能力及建模能力、分段函数的解析式,属于难题.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.理解本题题意的关键是构造分段函数,构造分段函数时,做到分段合理、不重不漏,分段函数的最值是各段的最大(最小)者的最大者(最小者).19、(1)见解析(2)【解题分析】

⑴因为,所以,即,其中是的外接圆半径,所以,所以为等腰三角形.⑵因为,所以.由余弦定理可知,,即解方程得:(舍去)所以.20、(1)210x3(2)【解题分析】

(1)由已知得:,即,∴,解得(舍)或,由通项公式得:,令,得,∴含有的项是.(2)∵此展开式共有11项,∴二项式系数(即项的系数)最大项是第6项,∴21、(1)单调递增区间为.(2)【解题分析】

(1)根据函数极值点定义可知,由此构造方程求得,得到;令即可求得函数的单调递增区间;(2)将原问题转化为至少有三个不

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论