山西省大学附属中学校2024届数学高二第二学期期末达标测试试题含解析_第1页
山西省大学附属中学校2024届数学高二第二学期期末达标测试试题含解析_第2页
山西省大学附属中学校2024届数学高二第二学期期末达标测试试题含解析_第3页
山西省大学附属中学校2024届数学高二第二学期期末达标测试试题含解析_第4页
山西省大学附属中学校2024届数学高二第二学期期末达标测试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省大学附属中学校2024届数学高二第二学期期末达标测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在正方形中,点E,F分别为边,的中点,将、分别沿、所在的直线进行翻折,在翻折的过程中,下列说法错误是()A.存在某个位置,使得直线与直线所成的角为B.存在某个位置,使得直线与直线所成的角为C.A、C两点都不可能重合D.存在某个位置,使得直线垂直于直线2.已知f'x是函数fx的导函数,将y=fA. B.C. D.3.已知向量,若,则()A. B. C. D.4.已知实数成等差数列,且曲线取得极大值的点坐标为,则等于()A.-1 B.0 C.1 D.25.给出一个命题p:若,且,则a,b,c,d中至少有一个小于零,在用反证法证明p时,应该假设()A.a,b,c,d中至少有一个正数 B.a,b,c,d全为正数C.a,b,c,d全都大于或等于0 D.a,b,c,d中至多有一个负数6.已知函数f(x)=xex2+axeA.1 B.-1 C.a D.-a7.()A.0 B. C.1 D.28.直线与相切,实数的值为()A. B. C. D.9.全国高中联赛设有数学、物理、化学、生物、信息5个学科,3名同学欲报名参赛,每人必选且只能选择一个学科参加竞赛,则不同的报名种数是()A. B. C. D.10.已知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,则公差d等于()A.1 B. C.2 D.311.已知e1,e2是单位向量,且e1⋅e2=0,向量a与eA.定值-1 B.定值1C.最大值1,最小值-1 D.最大值0,最小值-112.在二项式的展开式中,所有项的二项式系数之和为256,则展开式的中间项的系数为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数在点处的切线为,则直线、曲线以及轴所围成的区域的面积为__________.14.有4个不同的小球,全部放入4个不同的盒子内,恰好有两个盒子不放球的不同放法的总数为____________________.15.若对一切,复数的模始终不大于2,则实数a的取值范围是_______;16.从边长为10cm×16cm的矩形纸板的四角截去四个相同的小正方形,作成一个无盖的盒子,则盒子容积的最大值为______cm1.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知(1)求;(2)若,求实数的值.18.(12分)已知,不等式的解集是.()求的值.()若存在实数解,求实数的取值范围.19.(12分)在平面直角坐标系中,已知直线的参数方程为(为参数).以坐标原点为极点,以坐标原点为极点,轴的非负半轴为极轴,取相同的长度单位建立极坐标系,曲线的极坐标方程为.(Ⅰ)求直线的普通方程和曲线的直角坐标方程;(Ⅱ)若曲线上的点到直线的最大距离为6,求实数的值.20.(12分)(选修4-5.不等式选讲)已知函数的最小值为.(1)求实数的值;(2)若,且,求证:.21.(12分)某球员是当今国内最好的球员之一,在赛季常规赛中,场均得分达分。分球和分球命中率分别为和,罚球命中率为.一场比赛分为一、二、三、四节,在某场比赛中该球员每节出手投分的次数分别是,,,,每节出手投三分的次数分别是,,,,罚球次数分别是,,,(罚球一次命中记分)。(1)估计该球员在这场比赛中的得分(精确到整数);(2)求该球员这场比赛四节都能投中三分球的概率;(3)设该球员这场比赛中最后一节的得分为,求的分布列和数学期望。22.(10分)《厉害了,我的国》这部电影记录:到2017年底,我国高铁营运里程达2.5万公里,位居世界第一位,超过第二名至第十名的总和,约占世界高铁总量的三分之二.如图是我国2009年至2017年高铁营运里程(单位:万公里)的折线图.根据这9年的高铁营运里程,甲、乙两位同学分别选择了与时间变量的两个回归模型①:;②.(1)求,(精确到0.01);(2)乙求得模型②的回归方程为,你认为哪个模型的拟合效果更好?并说明理由.附:参考公式:,,.参考数据:1.3976.942850.220.093.72

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】

在A中,可找到当时,直线AF与直线CE垂直;在B中,由选项A可得线AF与直线CE所成的角可以从到,自然可取到;在C中,若A与C重合,则,推出矛盾;在D中,若AB⊥CD,可推出则,矛盾.【题目详解】解:将DE平移与BF重合,如图:在A中,若,又,则面,则,即当时,直线AF与直线CE垂直,故A正确;

在B中,由选项A可得线AF与直线CE所成的角可以从到,必然会存在某个位置,使得直线AF与直线CE所成的角为60°,故B正确;在C中,若A与C重合,则,不符合题意,则A与C恒不重合,故C正确;

在D中,,又CB⊥CD,则CD⊥面ACB,所以AC⊥CD,即,又,则,矛盾,故D不成立;

故选:D.【题目点拨】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,是中档题.2、D【解题分析】

根据f'x的正负与f【题目详解】因为f'x是函数fx的导数,f'x>0时,函数A中,直线对应f'x,曲线对应B中,x轴上方曲线对应fx,x轴下方曲线对应fC中,x轴上方曲线对应f'x,x轴下方曲线对应D中,无论x轴上方曲线或x轴下方曲线,对应f'x时,fx都应该是单调函数,但图中是两个不单调的函数,显然故选D【题目点拨】本题主要考查函数与导函数图像之间的关系,熟记导函数与导数间的关系即可,属于常考题型.3、C【解题分析】

首先根据向量的线性运算求出向量,再利用平面向量数量积的坐标表示列出方程,即可求出的值.【题目详解】因为,,所以,因为,所以,即,解得或,又,所以.故选:C.【题目点拨】本题主要考查平面向量的线性运算,平面向量数量积的坐标表示,属于基础题.4、B【解题分析】由题意得,,解得由于是等差数列,所以,选B.5、C【解题分析】

由“中至少一个小于零”的否定为“全都大于等于”即可求解.【题目详解】因为“a,b,c,d中至少有一个小于零”的否定为“全都大于等于”,

所以由用反证法证明数学命题的方法可得,应假设“全都大于等于”,

故选:C.【题目点拨】本题主要考查了反证法,反证法的证明步骤,属于容易题.6、A【解题分析】

令xex=t,构造g(x)=xex,要使函数f(x)=xex2+axex-a有三个不同的零点x1,x2,x【题目详解】令xex=t,构造g(x)=xex,求导得g'(x)=故g(x)在-∞,1上单调递增,在1,+∞上单调递减,且x<0时,g(x)<0,x>0时,g(x)>0,g(x)max=g(1)=1e,可画出函数g(x)的图象(见下图),要使函数f(x)=xex2+axex-a有三个不同的零点x1,x若a>0,即t1+t2=-a<0t1故1-x若a<-4,即t1+t2=-a>4t1⋅故选A.【题目点拨】解决函数零点问题,常常利用数形结合、等价转化等数学思想.7、C【解题分析】

根据定积分的意义和性质,,计算即可得出.【题目详解】因为,故选C.【题目点拨】本题主要考查了含绝对值的被积函数的定积分求值,定积分的性质,属于中档题.8、B【解题分析】

利用切线斜率等于导数值可求得切点横坐标,代入可求得切点坐标,将切点坐标代入可求得结果.【题目详解】由得:与相切切点横坐标为:切点纵坐标为:,即切点坐标为:,解得:本题正确选项:【题目点拨】本题考查导数的几何意义的应用,关键是能够利用切线斜率求得切点坐标.9、C【解题分析】分析:利用分布计数乘法原理解答即可.详解:全国高中联赛设有数学、物理、化学、生物、信息5个学科,3名同学欲报名参赛,每人必选且只能选择一个学科参加竞赛,则每位同学都可以从5科中任选一科,由乘法原理,可得不同的报名种数是故选C.点睛:本题考查分布计数乘法原理,属基础题.10、C【解题分析】试题分析:设出等差数列的首项和公差,由a3=6,S3=11,联立可求公差d.解:设等差数列{an}的首项为a1,公差为d,由a3=6,S3=11,得:解得:a1=1,d=1.故选C.考点:等差数列的前n项和.11、A【解题分析】

由题意可设e1=(1,0),e【题目详解】由题意设e1=(1,0),e2=(0,1)所以a-所以(x-1)2又a-2所以数量积a⋅故选:A.【题目点拨】本题考查平面向量基本定理以及模长问题,用解析法,设出向量的坐标,用坐标运算会更加方便。12、C【解题分析】

先根据条件求出,再由二项式定理及展开式通项公式,即可得答案.【题目详解】由已知可得:,所以,则展开式的中间项为,即展开式的中间项的系数为1120.故选:C.【题目点拨】本题考查由二项式定理及展开式通项公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

先利用二倍角公式化简函数f(x)的解析式,利用导数求出该点的斜率,然后求出切点的坐标,得出切线的方程,最后根据定积分即可求出直线l、曲线f(x)以及轴所围成的区域的面积.【题目详解】∵f(x)=1﹣2sin2x=cos(2x),f()=0,∴切点坐标为了(,0).又f′(x)=﹣2sin2x.∴f′()=﹣2,切线的斜率k=﹣2,∵切线方程为:y=﹣2(x﹣),即y=﹣2x+,所以直线l、曲线f(x)以及y轴所围成的区域的面积为:.故答案为:.【题目点拨】(1)本题主要考查定积分的计算,考查利用导数求曲线的切线方程,考查利用定积分求曲边梯形的面积,意在考查学生对这些知识的掌握水平和分析推理计算能力.(2)图中阴影部分的面积S=.14、84【解题分析】

四个不同的球全部放入4个不同的盒子内,恰有两个盒子不放球的不同放法的求法,分为两步来求解,先把四个球分为两组,再取两个盒子,作全排列,由于四个球分两组有两种分法,一种是2,2,另一种是3,1,故此题分为两类来求解,再求出它们的和,即可得到答案【题目详解】四个球分为两组有两种分法,(2,2),(3,1)

若两组每组有两个球,不同的分法有种,恰有两个盒子不放球的不同放法是3×A42=36种

若两组一组为3,一组为1个球,不同分法有C43=4种恰有两个盒子不放球的不同放法是4×A42=48种

综上恰有两个盒子不放球的不同放法是36+48=84种即答案为84.【题目点拨】题考查察排列、组合的实际应用,解题的关键是理解事件“四个不同的球全部放入4个不同的盒子内,恰有两个盒子不放球”,宜先将四个球分为两组,再放入,分步求不同的放法种数15、【解题分析】

由模的定义求出模,列出不等式,用几何意义解释此不等式,问题为点到的距离不大于2,而点以原点为圆心的单位圆上,因此只要到圆心距离不大于1即可.【题目详解】由题意,设,,则,而在圆上,∴,即,解得.故答案为:【题目点拨】本题考查复数的模的定义,考查平面上两点间的距离公式.解题关键是利用的几何意义,把它转化为两点间的距离,而其中一点又是单位圆上的动点,由点到圆上点的距离最大值为此点到圆心距离加半径,从而问题可转化为点到圆心的距离不大于1,这样问题易求解.16、144【解题分析】

设小正方形的边长为xcm,【题目详解】设小正方形的边长为xcm则盒子的容积V=V当0<x<2时,V'>0,当2<x<5∴x=2时,V取得极大值,也是最大值,V=故答案为144【题目点拨】本题主要考查了导数在解决实际问题中的应用,考查了学生的阅读理解能力和利用数学知识解决问题的能力,属于基础题目.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】分析:(1)化简复数为代数形式后,再结合复数模的公式,即可求解;(2)化简复数z为1+i,由条件可得a+b+(a+2)i=1﹣i,解方程求得a,b的值.详解:(1)化简得(2)解得点睛:本题考查了复数的运算法则、复数相等,考查了推理能力与计算能力,属于基础题,复数问题高考必考,常见考点有:点坐标和复数的对应关系,点的象限和复数的对应关系,复数的加减乘除运算,复数的模长的计算.18、(1),(2).【解题分析】试题分析:(1)通过讨论a的范围,求出不等式的解集,根据对应关系求出a的值即可;(2)根据不等式的性质求出最小值,得到关于k的不等式,解出即可.解析:(1)由,得,即,当时,,所以,解得;当时,,所以无解.所以.(2)因为,所以要使存在实数解,只需,所以实数的取值范围是.点睛:本题考查了解绝对值不等式问题,考查分类讨论思想以及转化思想,以及函数恒成立求参的方法.19、(Ⅰ)直线的普通方程为.曲线的直角坐标方程为;(Ⅱ).【解题分析】分析:(Ⅰ)消去参数m可得直线的普通方程为.极坐标方程化为直角坐标方程可得曲线的直角坐标方程为.(Ⅱ)由题意结合直线与圆的位置关系整理计算可得.详解:(Ⅰ)由得,消去,得,所以直线的普通方程为.由,得,代入,得,所以曲线的直角坐标方程为.(Ⅱ)曲线:的圆心为,半径为,圆心到直线的距离为,若曲线上的点到直线的最大距离为6,则,即,解得.点睛:求解与极坐标有关的问题的主要方法:(1)直接利用极坐标系求解,可与数形结合思想配合使用;(2)转化为直角坐标系,用直角坐标求解.使用后一种方法时,应注意若结果要求的是极坐标,还应将直角坐标化为极坐标.20、(1)3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论