那曲市重点中学2024届高二数学第二学期期末教学质量检测试题含解析_第1页
那曲市重点中学2024届高二数学第二学期期末教学质量检测试题含解析_第2页
那曲市重点中学2024届高二数学第二学期期末教学质量检测试题含解析_第3页
那曲市重点中学2024届高二数学第二学期期末教学质量检测试题含解析_第4页
那曲市重点中学2024届高二数学第二学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

VIP免费下载

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

那曲市重点中学2024届高二数学第二学期期末教学质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.复数的虚部为()A. B. C.1 D.22.已知函数,则曲线在处的切线的倾斜角为()A. B. C. D.3.抛物线的焦点坐标是()A. B. C. D.4.已知复数(为虚数单位),则()A. B. C. D.5.已知为虚数单位,复数,则复数的虚部为A. B. C. D.6.设n=0π2A.20 B.-20 C.120 D.-1207.A. B. C. D.8.已知定义域为的函数满足,,当时,则()A. B.3 C. D.49.对于椭圆,若点满足,则称该点在椭圆内,在平面直角坐标系中,若点A在过点的任意椭圆内或椭圆上,则满足条件的点A构成的图形为()A.三角形及其内部 B.矩形及其内部 C.圆及其内部 D.椭圆及其内部10.设是两个平面向量,则“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件11.命题“,使得”的否定形式是()A.,使得 B.,使得C.,使得 D.,使得12.在一个袋子中装有个除颜色外其他均相同的小球,其中有红球个、白球个、黄球个,从袋中随机摸出一个球,记下颜色后放回,连续摸次,则记下的颜色中有红有黄但没有白的概率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若,,与的夹角为,则的值为______.14.设函数,则_________;15.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层灯数为_____________16.已知的外接圆半径为1,,点在线段上,且,则面积的最大值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在侧棱垂直于底面的三棱柱中,为侧面的对角线的交点,分别为棱的中点.(1)求证:平面//平面;(2)求二面角的余弦值.18.(12分)如图,在四棱锥中,已知底面为菱形,,,为对角线与的交点,底面且(1)求异面直线与所成角的余弦值;(2)求平面与平面所成锐二面角的余弦值.19.(12分)在平面直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方程;(2)求曲线上的直线距离最大的点的直角坐标.20.(12分)已知a,,点在矩阵对应的变换下得到点.(1)求a,b的值;(2)求矩阵A的特征值和特征向量;(3)若向量,求.21.(12分)如图,在四棱锥中,底面是直角梯形,且,.(1)证明:平面;(2)求平面与平面所成锐二面角的余弦值.22.(10分)已知函数fx(1)当a=2,求函数fx(2)若函数fx

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

由复数除法化复数为代数形式,根据复数概念可得.【题目详解】因为,所以复数的虚部为,故选:A.【题目点拨】本题考查复数的除法运算,考查复数的概念.属于简单题.2、B【解题分析】

求得的导数,可得切线的斜率,由直线的斜率公式,可得所求倾斜角.【题目详解】函数的导数为,可得在处的切线的斜率为,即,为倾斜角,可得.故选:B.【题目点拨】本题主要考查了导数的几何意义,函数在某点处的导数即为曲线在该点处的切线的斜率,是解题的关键,属于容易题.3、A【解题分析】分析:先把抛物线的方程化成标准方程,再求其焦点坐标.详解:由题得,所以抛物线的焦点坐标为.故答案为A.点睛:(1)本题主要考查抛物线的简单几何性质,意在考查学生对这些知识的掌握水平.(2)研究圆锥曲线时,首先一般把曲线的方程化成标准方程再研究.4、D【解题分析】分析:化简复,利用复数模的公式求解即可.详解:因为,所以=,故选D.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.5、B【解题分析】由题意得,所以复数的虚部为.选B.6、B【解题分析】

先利用微积分基本定理求出n的值,然后利用二项式定理展开式通项,令x的指数为零,解出相应的参数值,代入通项可得出常数项的值。【题目详解】∵n=0二项式x-1x6令6-2r=0,得r=3,因此,二项式x-1x6故选:B.【题目点拨】本题考查定积分的计算和二项式指定项的系数,解题的关键就是微积分定理的应用以及二项式展开式通项的应用,考查计算能力,属于中等题。7、D【解题分析】分析:根据公式,可直接计算得详解:,故选D.点睛:复数题是每年高考的必考内容,一般以选择或填空形式出现,属简单得分题,高考中复数主要考查的内容有:复数的分类、复数的几何意义、共轭复数,复数的模及复数的乘除运算,在解决此类问题时,注意避免忽略中的负号导致出错.8、D【解题分析】

根据奇偶性和可知关于轴和对称,由对称性和周期性关系可确定周期为,进而将所求函数值化为,代入可求得结果.【题目详解】,为偶函数,图象关于轴对称;,关于直线对称;是周期为的周期函数,.故选:.【题目点拨】本题考查利用函数的性质求解函数值的问题,涉及到函数奇偶性、对称性和周期性的应用;关键是能够熟练掌握对称性和周期性的关系,准确求得函数的周期性.9、B【解题分析】

由在椭圆上,根据椭圆的对称性,则关于坐标轴和原点的对称点都在椭圆上,即可得结论.【题目详解】设在过的任意椭圆内或椭圆上,则,,即,由椭圆对称性知,都在任意椭圆上,∴满足条件的点在矩形上及其内部,故选:B.【题目点拨】本题考查点到椭圆的位置关系.考查椭圆的对称性.由点在椭圆上,则也在椭圆上,这样过点的所有椭圆的公共部分就是矩形及其内部.10、A【解题分析】

由,则是成立的;反之,若,而不一定成立,即可得到答案.【题目详解】由题意是两个平面向量,若,则是成立的;反之,若,则向量可能是不同的,所以不一定成立,所以是是成立的充分而不必要条件,故选A.【题目点拨】本题主要考查了向量的概念以及向量模的概念的应用,以及充分条件与必要条件的判定,着重考查了推理与运算能力,属于基础题.11、D【解题分析】试题分析:的否定是,的否定是,的否定是.故选D.【考点】全称命题与特称命题的否定.【方法点睛】全称命题的否定是特称命题,特称命题的否定是全称命题.对含有存在(全称)量词的命题进行否定需要两步操作:①将存在(全称)量词改成全称(存在)量词;②将结论加以否定.12、C【解题分析】分析:由已知得取出的3球中有2红1黄或2黄1红,2红1黄的情况有3种,2黄1红的情况也有3种,由此能求出记下的颜色中有红有黄但没有白的概率.详解:从袋中随机摸出一个球,摸到红球、白球、黄球的概率分别为,由已知得取出的3球中有2红1黄或2黄1红,2红1黄的情况有3种,2黄1红的情况也有3种,下的颜色中有红有黄但没有白的概率为.故选:C.点睛:本题考查概率的求法,是基础题,解题时要认真审题,注意相互独立事件概率计算公式的合理运用.二、填空题:本题共4小题,每小题5分,共20分。13、或【解题分析】

利用空间向量的数量积的坐标运算公式可求得,从而可求得的值.【题目详解】解:,,,,,又与的夹角为,,解得:或1.故答案为:或1【题目点拨】本题考查空间向量的数量积的坐标运算,熟练掌握空间向量的数量积的坐标运算公式是关键,属于中档题.14、【解题分析】

先结合分段函数的解析式计算,代入可求出的值.【题目详解】由题意可知,,因此,,故答案为.【题目点拨】本题考查分段函数求值,在计算多层函数值时,遵循由内到外逐层计算,同时要注意自变量的取值,选择合适的解析式进行计算,考查计算能力,属于基础题.15、1【解题分析】分析:设塔的顶层共有a1盏灯,则数列{an}公比为2的等比数列,利用等比数列前n项和公式能求出结果.详解:设塔的顶层共有a1盏灯,则数列{an}公比为2的等比数列,∴S7=a1(1-27点睛:本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力.16、【解题分析】

由所以可知为直径,设,求导得到面积的最大值.【题目详解】由所以可知为直径,所以,设,则,在中,有,,所以的面积,.方法一:(导数法),所以当时,,当时,,所以在上单调递增,在上单调递减,所以当时,的面积的最大值为.方法二:(均值不等式),因为.当且仅当,即时等号成立,即.【题目点拨】本题考查了面积的最大值问题,引入参数是解题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解题分析】

(1)利用线线平行证明平面//平面,(2)以C为坐标原点建系求解即可.【题目详解】(1)证明分别为边的中点,可得,又由直三棱柱可知侧面为矩形,可得故有,由直三棱柱可知侧面为矩形,可得为的中点,又由为的中点,可得.由,平面,,平面,得平面,平面,,可得平面平面.(2)为轴建立空间直角坐标系,如图,则,设平面的一个法向量为,取,有同样可求出平面的一个法向量,,结合图形二面角的余弦值为.【题目点拨】本题属于基础题,线线平行的性质定理和线面平行的性质定理要熟练掌握,利用空间向量的夹角公式求解二面角.18、(1);(2)【解题分析】

根据底面为菱形得,利用线面垂直的性质可得,,从而以为坐标原点建立空间直角坐标系;(1)利用异面直线所成角的空间向量求法可求得结果;(2)分别得到两个平面的法向量,根据二面角的空间向量求法可求得结果.【题目详解】底面为菱形又底面,底面,以为坐标原点可建立如图所示的空间直角坐标系则,,,(1)设为异面直线与所成的角,又,异面直线与所成的角的余弦值为:(2)平面平面的法向量取设平面的法向量为,又,则,令,则,设为两个平面所成的锐二面角的平面角,则:平面与平面所成锐二面角的余弦值为:【题目点拨】本题考查利用空间向量法求解角度问题,涉及到异面直线所成角、平面与平面所成角的求解问题,考查学生的运算和求解能力,属于常规题型.19、(1)(2)【解题分析】分析:(1)利用极坐标与直角坐标互化公式可得曲线的直角坐标方程为.(2)直线方程为,设圆上点的坐标为,结合点到直线距离公式和三角函数的性质可知满足题意时点坐标为.详解:(1)因为,,,所以曲线的直角坐标方程为.(2)直线方程为,圆的标准方程为,所以设圆上点坐标为,则,所以当,即时距离最大,此时点坐标为.点睛:本题主要考查极坐标方程与直角坐标方程的转化,直线与圆的位置关系,三角函数的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.20、(1);(2)矩阵A的特征值为,3,分别对应的一个特征值为,;(3)【解题分析】

(1)直接利用矩阵的乘法运算即可;(2)利用特征多项式计算即可;(3)先计算出,再利用计算即可得到答案.【题目详解】(1)由题意知,,则,解得.(2)由(1)知,矩阵A的特征多项式,令,得到A的特征值为,.将代入方程组,解得,所以矩阵A的属于特征值的一个特征向量为.再将代入方程组,解得,所以矩阵A的属于特征值3的一个特征向量为.综上,矩阵A的特征值为,3,分别对应的一个特征值为,.(3)设,即,所以,解得,所以,所以.【题目点拨】本题考查矩阵的乘法、特征值、特征向量,考查学生的基本计算能力,是一道中档题.21、(1)证明见解析;(2).【解题分析】

(1)推导出PA⊥AD,PA⊥AB,由此能证明PA⊥平面ABCD.(2)以A为原点,AB,AD,AP为x,y,z轴的正方向建立空间直角坐标系,利用向量法能求出平面PBC与平面PAD所成锐二面角的余弦值.【题目详解】(1)因为,所以,即.同理可得.因为.所以平面.(2)由题意可知,两两垂直,故以A为原点,分别为轴的正方向建立如图所示的空间直角坐标系,则,所以.设平面的法向量为,则,不妨取则易得平面,所以平面的一个法向量为,记平面与平面所成锐二面角为,则故平面与平面所成锐二面角的余弦值为.【题目点拨】本题考查线面垂直的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.22、(1)见解析;(2)0,2【解题分析】

(1)代入a的值,求出函数的单调区间,从而求出函数的极值即可;(2)求出函数的导数,通过讨论a的范围,求出函数的单调区间,结合函数的零点个数确定a的范围即可.【题目详解】(1)当a=2时,f'x=2x-列表:x011f—0+f↘极小值f↗所以,当x=1时,fx有极小值f1=(2)①因为fx=x2-a当a≤0时,f'所以fx在0,+∞当a>0时,由f'x>0得x>a2,由所以fx在0,a2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论