2024届安徽省芜湖市高二数学第二学期期末调研模拟试题含解析_第1页
2024届安徽省芜湖市高二数学第二学期期末调研模拟试题含解析_第2页
2024届安徽省芜湖市高二数学第二学期期末调研模拟试题含解析_第3页
2024届安徽省芜湖市高二数学第二学期期末调研模拟试题含解析_第4页
2024届安徽省芜湖市高二数学第二学期期末调研模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届安徽省芜湖市高二数学第二学期期末调研模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知曲线在点处的切线的倾斜角为,则的值为()A. B. C. D.2.已知为虚数单位,则复数=()A. B. C. D.3.已知两个不同的平面α,β和两条不同的直线a,b满足a⊄α,b⊄β,则“a∥b”是“α∥β”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.命题:,的否定是()A., B.,C., D.,5.函数(,)的部分图象如图所示,则的值分别是()A. B. C. D.6.若命题是真命题,则实数a的取值范围是A. B.C. D.7.函数的部分图象可能是()A. B.C. D.8.若幂函数的图象经过点,则其解析式为()A. B. C. D.9.已知O为坐标原点,抛物线y2=2x与过焦点的直线交于A,B两点,则的值是A. B. C.3 D.310.为了了解我校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,第2小组的频数为12,则抽取的学生总人数是()A.12 B.24 C.48 D.5611.已知将函数的图象向左平移个单位长度后得到的图象,则在上的值域为()A. B. C. D.12.用反证法证明命题“已知为非零实数,且,,求证中至少有两个为正数”时,要做的假设是()A.中至少有两个为负数 B.中至多有一个为负数C.中至多有两个为正数 D.中至多有两个为负数二、填空题:本题共4小题,每小题5分,共20分。13.费马点是指三角形内到三角形三个顶点距离之和最小的点.当三角形最大内角小于时,费马点与三个顶点连线正好三等分费马点所在的周角,即该点所对的三角形三边的张角相等均为.根据以上性质,函数的最小值为__________.14.已知随机变量,且,,则_______.15.已知函数的导函数为,若,则的值为___.16.若角满足,则=_____;三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某种证件的获取规则是:参加科目A和科目B的考试,每个科目考试的成绩分为合格与不合格,每个科目最多只有2次考试机会,且参加科目A考试的成绩为合格后,才能参加科目B的考试;参加某科目考试的成绩为合格后,不再参加该科目的考试,参加两个科目考试的成绩均为合格才能获得该证件.现有一人想获取该证件,已知此人每次参加科目A考试的成绩为合格的概率是,每次参加科目B考试的成绩为合格的概率是,且各次考试的成绩为合格与不合格均互不影响.假设此人不放弃按规则所给的所有考试机会,记他参加考试的次数为X.(1)求X的所有可能取的值;(2)求X的分布列和数学期望.18.(12分)某公园设有自行车租车点,租车的收费标准是每小时元(不足一小时的部分按一小时计算).甲、乙两人各租一辆自行车,若甲、乙不超过一小时还车的概率分别为,一小时以上且不超过两小时还车的概率分别为,两人租车时间都不会超过三小时.(1)求甲、乙两人所付租车费用相同的概率;(2)设甲、乙两人所付的租车费用之和为随机变量,求的分布列与数学期望.19.(12分)已知定义域为的函数是奇函数.(1)求的值;(2)已知在定义域上为减函数,若对任意的,不等式为常数)恒成立,求的取值范围.20.(12分)一个口袋内有个不同的红球,个不同的白球,(1)从中任取个球,红球的个数不比白球少的取法有多少种?(2)若取一个红球记分,取一个白球记分,从中任取个球,使总分不少于分的取法有多少种?21.(12分)如图,已知椭圆与椭圆的离心率相同.(1)求的值;(2)过椭圆的左顶点作直线,交椭圆于另一点,交椭圆于两点(点在之间).①求面积的最大值(为坐标原点);②设的中点为,椭圆的右顶点为,直线与直线的交点为,试探究点是否在某一条定直线上运动,若是,求出该直线方程;若不是,请说明理由.22.(10分)设函数过点.(Ⅰ)求函数的极大值和极小值.(Ⅱ)求函数在上的最大值和最小值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】

利用导数求出,由可求出的值.【题目详解】,,由题意可得,因此,,故选D.【题目点拨】本题考查导数的几何意义,考查导数的运算、直线的倾斜角和斜率之间的关系,意在考查函数的切线斜率与导数之间的关系,考查计算能力,属于中等题.2、A【解题分析】

根据复数的除法运算,即可求解,得到答案.【题目详解】由复数的运算,可得复数,故选A.【题目点拨】本题主要考查了复数的基本运算,其中解答中熟记的除法运算方法,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.3、D【解题分析】

分别判断充分性和必要性得到答案.【题目详解】如图所示:既不充分也不必要条件.故答案选D【题目点拨】本题考查了充分必要条件,举出反例可以简化运算.4、C【解题分析】

根据全称命题的否定是特称命题,即可进行选择.【题目详解】因为全称命题的否定是特称命题,故可得,的否定是,.故选:C.【题目点拨】本题考查全称命题的否定,属基础题.5、A【解题分析】

利用,求出,再利用,求出即可【题目详解】,,,则有,代入得,则有,,,又,故答案选A【题目点拨】本题考查三角函数的图像问题,依次求出和即可,属于简单题6、B【解题分析】因为命题是真命题,即不等式对恒成立,即恒成立,当a+2=0时,不符合题意,故有,即,解得,则实数a的取值范围是.故选:B.7、A【解题分析】

考查函数的定义域、在上的函数值符号,可得出正确选项.【题目详解】对于函数,,解得且,该函数的定义域为,排除B、D选项.当时,,,则,此时,,故选:A.【题目点拨】本题考查函数图象的识别,一般从函数的定义域、奇偶性、单调性、零点、函数值符号进行判断,考查分析问题和解决问题的能力,属于中等题.8、C【解题分析】

设幂函数,代入点,即可求得解析式.【题目详解】设幂函数,代入点,,解得,.故选C.【题目点拨】本题考查了幂函数解析式的求法.9、B【解题分析】抛物线的焦点为,当直线l与x轴垂直时,,所以10、C【解题分析】试题分析:根据题意可知,第组的频数为,前组的频率和为,所以抽取的学生总人数为,故选C.考点:频率分布直方图与频数.11、B【解题分析】解析:因,故,因,故,则,所以,应选答案B.12、A【解题分析】分析:用反证法证明某命题时,应先假设命题的否定成立,而命题的否定为:“a、b、c中至少有二个为负数”,由此得出结论.详解:用反证法证明某命题时,应先假设命题的否定成立,而:“中至少有二个为正数”的否定为:“中至少有二个为负数”.故选A.点睛:本题主要考查用反证法证明数学命题,把要证的结论进行否定,得到要证的结论的反面是解题的关键,着重考查了推理与论证能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

函数表示的是点(x,y)到点C(1,0)的距离与到点B(-1,0),到A(0,2)的距离之和,连接这三个点构成了三角形ABC,由角DOB为,角DOC为,OD=,OC=,OA=,距离之和为:2OC+OA,求和即可.【题目详解】根据题意画出图像并建系,D为坐标原点函数表示的是点(x,y)到点C(1,0)的距离与到点B(-1,0),到A(0,2)的距离之和,设三角形这个等腰三角形的费马点在高线AD上,设为O点即费马点,连接OB,OC,则角DOB为,角DOC为,B(-1,0)C(1,0),A(0,2),OD=,OC=,OA=,距离之和为:2OC+OA=+=2+.故答案为.【题目点拨】这个题目考查了点点距的公式,以及解三角形的应用,解三角形的范围问题常见两类,一类是根据基本不等式求范围,注意相等条件的判断;另一类是根据边或角的范围计算,解题时要注意题干信息给出的限制条件.14、【解题分析】

利用随机变量,关于对称,结合已知求出结果【题目详解】随机变量满足,图象关于对称,则故答案为【题目点拨】本题考查了正态分布,由正态分布的对称性即可计算出结果15、【解题分析】

求函数的导函数,令即可求出的值.【题目详解】因为令则所以【题目点拨】本题主要考查了函数的导数,及导函数求值,属于中档题.16、【解题分析】

由,得tanα=-2,由二倍角的正切公式化简后,把tanα的值代入即可.【题目详解】∵sina+2cosa=0,得,即tanα=-2,∴tan2α=.故答案为【题目点拨】本题考查了二倍角的正切公式,以及同角三角函数间的基本关系,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)2,3,1(2)分布列见解析,【解题分析】

(1)的所有可能取的值是.(2)设表示事件“参加科目的第次考试的成绩为合格”,表示事件“参加科目的第次考试的成绩为合格”,且相互独立,利用相互独立与互斥事件的概率计算公式及其数学期望即可得出结果.【题目详解】解:(1)X的所有可能取的值是2,3,1.(2)设表示事件“参加科目A的第(,)次考试的成绩为合格”,表示事件“参加科目B的第(,)次考试的成绩为合格”,且,相互独立(,),那么,.,,.∴X的分布列为:X231p∴.故X的数学期望为.【题目点拨】本题考查了相互独立与互斥事件的概率计算公式及其数学期望,考查了推理能力与计算能力,属于中档题.18、(1);(2)见解析【解题分析】

(1)两人所付租车费用相同的情况有2,4,6三种,分别算出对应概率,相加得到答案.(2)的可能取值为,分别计算概率,写出分布列计算数学期望.【题目详解】解:(1)甲、乙两人所付租车费用相同即为元.都付元的概率为,都付元的概率为;都付元的概率为,故所付费用相同的概率为(2)依题意知,的可能取值为,;;,故的分布列为ξ4681012P所求数学期望【题目点拨】本题考查了概率的计算,分布列和数学期望,意在考查学生的计算能力.19、解:(1)因为是奇函数,所以=0,即………3(2)由(1)知,………5设,则.因为函数y=2在R上是增函数且,∴>0.又>0,∴>0,即,∴在上为减函数.另法:或证明f′(x)0………9(3)因为是奇函数,从而不等式等价于,………3因为为减函数,由上式推得.即对一切有,从而判别式………13【解题分析】定义域为R的奇函数,得b=1,在代入1,-1,函数值相反得a;,通常用函数的单调性转化为自变量的大小关系.(1)是奇函数,,┈┈┈┈┈┈┈┈┈┈┈┈2分即┈┈┈┈┈┈┈┈┈┈┈┈2分┈┈┈┈┈┈┈┈┈┈┈┈2分┈┈┈┈┈┈┈┈┈┈┈┈1分(2)由(1)知由上式易知在R上为减函数.┈┈┈┈┈┈┈┈┈┈┈┈2分又因为为奇函数,从而不等式,等价于┈┈┈┈┈┈┈┈┈┈┈┈2分为减函数┈┈┈┈┈┈┈┈┈┈┈┈1分即对一切都有┈┈┈┈┈┈┈┈┈┈┈┈1分┈┈┈┈┈┈┈┈┈┈┈┈1分20、(1)115(2)186【解题分析】

(1)从中任取4个球,红球的个数不比白球少的取法,红球4个,红球3个和白球1个,红球2个和白球2个,红球4个,取法有种,红球3个和白球1个,取法有种;红球2个和白球2个,取法有种;根据分类计数原理,红球的个数不比白球少的取法有种.(2)使总分不少于7分情况有三种情况,4红1白,3红2白,2红3白.第一种,4红1白,取法有种;第二种,3红2白,取法有种,第三种,2红3白,取法有种,根据分类计数原理,总分不少于7分的取法有21、(1);(2)①;②点在定直线上【解题分析】

(1)利用两个椭圆离心率相同可构造出方程,解方程求得结果;(2)①当与轴重合时,可知不符合题意,则可设直线的方程:且;设,,联立直线与椭圆方程可求得,则可将所求面积表示为:,利用换元的方式将问题转化为二次函数的最值的求解,从而求得所求的最大值;②利用中点坐标公式求得,则可得直线的方程;联立直线与椭圆方程,从而可求解出点坐标,进而得到直线方程,与直线联立解得坐标,从而可得定直线.【题目详解】(1)由椭圆方程知:,离心率:又椭圆中,,,又,解得:(2)①当直线与轴重合时,三点共线,不符合题意故设直线的方程为:且设,由(1)知椭圆的方程为:联立方程消去得:即:解得:,,又令,此时面积的最大值为:②由①知:直线的斜率:则直线的方程为:联立方程消去得:,解得:则直线的方程为:联立直线和的方程,解得:点在定直线上运动【题目点拨】本题考查直线与椭圆的综合应用问题,涉及到椭圆方程的求解、椭圆中的三角形面积最值的求解、椭圆中的定直线问题;解决定直线问题的关键是能够通过已知条件求得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论