2024届海南省儋州第一中学数学高二下期末联考模拟试题含解析_第1页
2024届海南省儋州第一中学数学高二下期末联考模拟试题含解析_第2页
2024届海南省儋州第一中学数学高二下期末联考模拟试题含解析_第3页
2024届海南省儋州第一中学数学高二下期末联考模拟试题含解析_第4页
2024届海南省儋州第一中学数学高二下期末联考模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届海南省儋州第一中学数学高二下期末联考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.求值:4cos50°-tan40°=()A. B. C. D.2-12.周末,某高校一学生宿舍甲乙丙丁四位同学正在做四件事情,看书、写信、听音乐、玩游戏,下面是关于他们各自所做事情的一些判断:①甲不在看书,也不在写信;②乙不在写信,也不在听音乐;③如果甲不在听音乐,那么丁也不在看书;④丙不在看书,也不写信.已知这些判断都是正确的,依据以上判断,请问乙同学正在做的事情是()A.玩游戏B.写信C.听音乐D.看书3.某电子元件生产厂家新引进一条产品质量检测线,现对检测线进行上线的检测试验:从装有个正品和个次品的同批次电子元件的盒子中随机抽取出个,再将电子元件放回.重复次这样的试验,那么“取出的个电子元件中有个正品,个次品”的结果恰好发生次的概率是()A. B. C. D.4.下列函数中,既是偶函数,又在区间上单调递增的是()A. B. C. D.5.下列函数中,在定义域内单调的是()A. B.C. D.6.若集合M={1,3},N={1,3,5},则满足M∪X=N的集合X的个数为()A.1 B.2C.3 D.47.若,则()A.2 B.4 C. D.88.在四边形中,如果,,那么四边形的形状是()A.矩形 B.菱形 C.正方形 D.直角梯形9.设,则的值为()A.-7 B. C.2 D.710.已知双曲线的离心率为2,过右焦点且垂直于轴的直线与双曲线交于两点.设到双曲线的同一条渐近线的距离分别为和,且则双曲线的方程为A. B.C. D.11.已知,且,则等于()A. B. C. D.12.已知复数满足(其中为虚数单位),则的共轭复数()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知复数z=2+6i,若复数mz+m2(1+i)为非零实数,求实数m的值为_____.14.在斜三棱柱中,底面边长和侧棱长都为2,若,,且,则的值为________15.正项等差数列中的,是函数的极值点,则______.16.若曲线在点处的切线斜率为1,则该切线方程为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图所示:在底面为直角梯形的四棱锥中,,面,E、F分别为、的中点.如果,,与底面成角.(1)求异面直线与所成角的大小(用反三角形式表示);(2)求点D到平面的距离.18.(12分)已知.(1)设,①求;②若在中,唯一的最大的数是,试求的值;(2)设,求.19.(12分)已知为正实数,函数.(1)求函数的最大值;(2)若函数的最大值是,求的最小值.20.(12分)在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为.(1)若,求C与l的交点坐标;(2)若C上的点到l的距离的最大值为,求.21.(12分)已知,,曲线在点处的切线平分圆C:的周长.(1)求a的值;(2)讨论函数的图象与直线的交点个数.22.(10分)如图,三棱柱的各棱长均为2,侧面底面,侧棱与底面所成的角为.(Ⅰ)求直线与底面所成的角;(Ⅱ)在线段上是否存在点,使得平面平面?若存在,求出的长;若不存在,请说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】

原式第一项利用诱导公式化简,第二项利用同角三角函数间的基本关系切化弦,通分后利用同分母分式的减法法则计算,再利用诱导公式及两角和与差的正弦函数公式化简,整理后利用两角和与差的余弦函数公式化为一个角的余弦函数,约分即可得到结果.【题目详解】4cos50°﹣tan40°=4sin40°﹣tan40°======.故选C.【题目点拨】本题考查了两角和与差的正弦、余弦函数公式,同角三角函数间的基本关系,以及诱导公式的作用,熟练掌握公式是解本题的关键.2、D【解题分析】由①知甲在听音乐或玩游戏,由②知乙在看书或玩游戏,由④知丙在听音乐或玩游戏,由③知,丁在看书,则甲在听音乐,丙在玩游戏,乙在看书,故选D.3、B【解题分析】

取出的个电子元件中有个正品,个次品的概率,重复次这样的试验,利用次独立重复试验中事件恰好发生次的概率计算公式能求出“取出的个电子元件中有个正品,个次品”的结果恰好发生次的概率【题目详解】从装有个正品和个次品的同批次电子元件的盒子中随机抽取出个,再将电子元件放回,取出的个电子元件中有个正品,个次品的概率,重复次这样的试验,那么“取出的个电子元件中有个正品,个次品”的结果恰好发生次的概率是:.故选:B【题目点拨】本题考查了次独立重复试验中事件恰好发生次的概率计算公式,属于基础题.4、D【解题分析】分析:根据函数奇偶性和单调性的定义和性质,对选项中的函数逐一验证判断即可.详解:四个选项中的函数都是偶函数,在上三个函数在上都递减,不符合题意,在上递增的只有,而故选D.点睛:本题主要考查函数奇偶性和单调性的判断,要求熟练掌握常见函数的奇偶性和单调性的性质,意在考查综合应用所学知识解决问题的能力.5、A【解题分析】

指数函数是单调递减,再判断其它选项错误,得到答案.【题目详解】A.,指数函数是单调递减函数,正确\B.反比例函数,在单调递减,在单调递减,但在上不单调,错误C.,在定义域内先减后增,错误D.,双勾函数,时先减后增,错误故答案选A【题目点拨】本题考查了函数的单调性,属于简单题.6、D【解题分析】可以是共4个,选D.7、D【解题分析】

通过导数的定义,即得答案.【题目详解】根据题意得,,故答案为D.【题目点拨】本题主要考查导数的定义,难度不大.8、A【解题分析】

由可判断出四边形为平行四边形,由可得出,由此判断出四边形的形状.【题目详解】,所以,四边形为平行四边形,由可得出,因此,平行四边形为矩形,故选A.【题目点拨】本题考查利用向量关系判断四边形的形状,判断时要将向量关系转化为线线关系,考查转化与化归思想,同时也考查了推理能力,属于中等题.9、D【解题分析】

利用赋值法,令即可确定的值.【题目详解】题中所给等式中,令可得:,即,令可得:,即,据此可知:的值为.本题选择D选项.【题目点拨】本题主要考查赋值法及其应用,意在考查学生的转化能力和计算求解能力.10、A【解题分析】

分析:由题意首先求得A,B的坐标,然后利用点到直线距离公式求得b的值,之后利用离心率求解a的值即可确定双曲线方程.详解:设双曲线的右焦点坐标为(c>0),则,由可得:,不妨设:,双曲线的一条渐近线方程为,据此可得:,,则,则,双曲线的离心率:,据此可得:,则双曲线的方程为.本题选择A选项.点睛:求双曲线的标准方程的基本方法是待定系数法.具体过程是先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a,b,c,e及渐近线之间的关系,求出a,b的值.如果已知双曲线的渐近线方程,求双曲线的标准方程,可利用有公共渐近线的双曲线方程为,再由条件求出λ的值即可.11、A【解题分析】

令,即可求出,由即可求出【题目详解】令,得,所以,故选A。【题目点拨】本题主要考查赋值法的应用。12、A【解题分析】

利用等式把复数z计算出来,然后计算z的共轭复数得到答案.【题目详解】,则.故选A【题目点拨】本题考查了复数的计算和共轭复数,意在考查学生对于复数的计算能力和共轭复数的概念,属于简单题.二、填空题:本题共4小题,每小题5分,共20分。13、-6【解题分析】

利用复数代数形式的乘除运算化简,再由虚部为0且实部不为0列式求解.【题目详解】由题意,,解得.故答案为-6.【题目点拨】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.14、4【解题分析】

根据向量线性运算分别表示出,结合向量数量积运算即可求解.【题目详解】根据题意,画出空间几何体如下图:,,,且,且底面边长和侧棱长都为2则,所以故答案为:4【题目点拨】本题考查了空间向量的线性运算和数量积的应用,属于基础题.15、4【解题分析】

先对函数求导,得到,根据题意,得到,根据等差数列性质,得到,进而可求出结果.【题目详解】因为,所以,又,是函数的极值点,所以,是方程的两实根,因此,因为数列是正项等差数列,所以,解得,因此.故答案为:.【题目点拨】本题主要考查由函数极值点求参数,以及等差数列的性质,熟记函数极值点的定义,以及等差数列的性质即可,属于常考题型.16、【解题分析】

求得函数的导数,可得切线的斜率,解方程可得切点的横坐标,进而得到切点坐标,由点斜式方程可得切线的方程.【题目详解】的导数为,在点处的切线斜率为1,可得,所以,切点纵坐标为:,可得切点为,即有切线的方程为,即为.故答案为.【题目点拨】本题考查导数的运用:求切线的方程,考查导数的几何意义,正确求导和运用点斜式方程是解题的关键,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】

(1)先确定与底面所成角,计算SA,再建立空间直角坐标系,利用向量数量积求异面直线与所成角;(2)先求平面的一个法向量,再利用向量投影求点D到平面的距离.【题目详解】(1)因为面,所以是与底面所成角,即,因为,以为坐标原点,所在直线分别为x,y,z轴建立空间直角坐标系,则,从而,,因此所以异面直线与所成角为,(2)设平面的一个法向量为,因为,所以令,从而点D到平面的距离为【题目点拨】本题考查线面角以及利用向量求线线角与点面距,考查综合分析求解能力,属中档题.18、(1)①;②或;(2).【解题分析】

(1)根据题意,得到;①令,即可求出结果;②根据二项展开式的通项公式,先得到通项为,再由题意,得到,求解,即可得出结果;(2)先由题意,得到,进而得出,化简,再根据二项式系数之和的公式,即可求出结果.【题目详解】(1)因为,①令,则;②因为二项式展开式的通项为:,又在中,唯一的最大的数是,所以,即,解得,即,又,所以或;(2)因为,根据二项展开式的通项公式,可得,,所以,则.【题目点拨】本题主要考查二项式定理的应用,熟记二项公式定理即可,属于常考题型.19、(1).(2)【解题分析】

(1)利用绝对值三角不等式即可求得结果;(2)由(1)可得,利用柯西不等式可求得结果.【题目详解】(1)由绝对值三角不等式得:(当且仅当时取等号).为正实数,,即(当且仅当时取等号),的最大值为.(2)由(1)知:,即.,,(当且仅当,即,,时取等号).的最小值为.【题目点拨】本题考查利用绝对值三角不等式和柯西不等式求解最值的问题;利用柯西不等式的关键是能够根据已知等式的形式,配凑出符合柯西不等式形式的式子,属于常考题型.20、(1),;(2)或.【解题分析】试题分析:(1)直线与椭圆的参数方程化为直角坐标方程,联立解交点坐标;(2)利用椭圆参数方程,设点,由点到直线距离公式求参数.试题解析:(1)曲线的普通方程为.当时,直线的普通方程为.由解得或.从而与的交点坐标为,.(2)直线的普通方程为,故上的点到的距离为.当时,的最大值为.由题设得,所以;当时,的最大值为.由题设得,所以.综上,或.点睛:本题为选修内容,先把直线与椭圆的参数方程化为直角坐标方程,联立方程,可得交点坐标,利用椭圆的参数方程,求椭圆上一点到一条直线的距离的最大值,直接利用点到直线的距离公式,表示出椭圆上的点到直线的距离,利用三角有界性确认最值,进而求得参数的值.21、(1);(2)见解析.【解题分析】

(1)求得曲线在点处的切线,根据题意可知圆C的圆心在此切线上,可得a的值.(2)根据得出极值,结合单调区间和函数图像,分类讨论的值和交点个数。【题目详解】(1),∴,,所以曲线在点处的切线方程为由切线平分圆C:的周长可知圆心在切线上,∴,∴(2)由(1)知,,令,解得或当或时,,故在,上为增函数;当时,,故在上为减函数.由此可知,在处取得极大值在处取得极小值大致图像如图:当或时,的图象与直线有一个交点当或时,的图象与直线有两个交点当时,的图象与直线有3个交点.【题目点拨】本题考查利用导数求切线,研究单调区间,考查数形结合思想求解交点个数问题,属于基础题.22、(1);(2).【解题分析】

试题分析:(1)根据题意建立空间

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论