七上-动点、动角问题12道好题-解析_第1页
七上-动点、动角问题12道好题-解析_第2页
七上-动点、动角问题12道好题-解析_第3页
七上-动点、动角问题12道好题-解析_第4页
七上-动点、动角问题12道好题-解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

七年级上学期动点、动角问题考题精选解析版1.如图,数轴上A,B,C三点对应的数分别是a,b,14,满足BC=6,AC=3BC.动点P从A点出发,沿数轴以每秒2个单位长度匀速向右运动,同时动点Q从C点出发,沿数轴以每秒1个单位长度匀速向左运动,设运动时间为t.(1)则a=,b=.(2)当P点运动到数2的位置时,Q点对应的数是多少?(3)是否存在t的值使CP=CQ,若存在求出t值,若不存在说明理由.1.解:(1)∵c=14,BC=6,∴b=14﹣6=8;∵AC=3BC,∴AC=18,∴a=14﹣18=﹣4;(2)[2﹣(﹣4)]÷2=3(秒),14﹣1×3=11.故Q点对应的数是11;(3)P在C点的左边,则18﹣2t=t,解得t=6;P在C点的右边,则2t﹣18=t,解得t=18.综上所述,t的值为6或18.故答案为:6;18.2.如图,点O为原点,A、B为数轴上两点,AB=15,且OA:OB=2:1(1)A、B对应的数分别为、;(2)点A、B分别以4个单位/秒和3个单位/秒的速度相向而行,则几秒后A、B相距1个单位长度?(3)动点P从点A出发,沿数轴正方向运动,M为线段AP的中点,N为线段PB的中点.在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长.2.解:(1)设OA=2x,则OB=x,由题意得,2x+x=15,解得,x=5,则OA=10、OB=5,∴A、B对应的数分别为﹣10、5,故答案为:﹣10;5;(2)设x秒后A、B相距1个单位长度,当点A在点B的左侧时(相遇前),4x+3x=15﹣1,解得,x=2,当点A在点B的右侧时(相遇后),4x+3x=15+1,解得,x=,答:2或秒后A、B相距1个单位长度;(3)在点P运动的过程中,线段MN的长度不发生变化,分两种情况:①当P在点B的左侧时,如图1,∵M为线段AP的中点,N为线段PB的中点,∴PM=AP,PN=PB,∴MN=PM+PN=AP+PB=AB=;②当P在点B的右侧时,如图2,同理得:PM=AP,PN=PB,∴MN=PM﹣PN=AP﹣PB=AB=;综上,在点P运动的过程中,线段MN的长度不发生变化,AB=.3.如图,点A、B都在数轴上,O为原点.(1)线段AB中点表示的数是;(2)若点B以每秒3个单位长度的速度沿数轴向右运动了t秒,当点B在点O左边时,OB=,当点B至点O右边时,OB=;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值.3.解:(1)线段AB中点表示的数是:=﹣1.故答案是:﹣1;(2)当点B在点O左边时,OB=4﹣3t,当点B至点O右边时,OB=3t﹣4;故答案是:4﹣3t,3t﹣4;(3)①当点O是线段AB的中点时,OB=OA4﹣3t=2+tt=0.5②当点B是线段OA的中点时,OA=2OB2+t=2(3t﹣4)t=2;③当点A是线段OB的中点时,OB=2OA3t﹣4=2(2+t)t=8.综上所述,符合条件的t的值是0.5,2或8.4.已知:b是最小的正整数,且a、b满足(c﹣6)2+|a+b|=0,请回答问题(1)请直接写出a、b、c的值.a=,b=,c=(2)a、b、c所对应的点分别为A、B、C,点P为一动点,其对应的数为x,点P在A、B之间运动时,请化简式子:|x+1|﹣|x﹣1|﹣2|x+5|(请写出化简过程)(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒n(n>0)个单位长度的速度向左运动,同时,点B和点C分别以每秒2n个单位长度和5n个单位长度的速度向右运动,假设经过t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.4.解:(1)∵b是最小的正整数,∴b=1,∵(c﹣6)2+|a+b|=0,(c﹣6)2≥0,|a+b|≥0,∴c=6,a=﹣1,b=1,故答案为﹣1,1,6.(2)由题意﹣1<x<1,∴|x+1|﹣|x﹣1|﹣2|x+5|=x+1+x﹣1﹣2x﹣10=﹣10.(3)不变,由题意BC=5+5nt﹣2nt=5+3nt,AB=nt+2+2nt=2+3nt,∴BC﹣AB=(5+3nt)﹣(2+3nt)=3,∴BC﹣AB的值不变,BC﹣AB=3.5.已知,如图所示,A、B、C是数轴上的三点,点C对的数是6,BC=4,AB=12.(1)写出A、B对应的数;(2)动点P、Q同时从A、C出发,分别以每秒6个单位,3个单位速度沿数轴正方向运动,M是AP的中点,N在CQ上且CN=CQ,设运动时间为t(t>0).①求点M、N对应的数(含t的式);②t为何值时OM=2BN.5.解:(1)∵C表示的数为6,BC=4,∴OB=6﹣4=2,∴B点表示2.∵AB=12,∴AO=12﹣2=10,∴A点表示﹣10.故点A对应的数是﹣10,点B对应的数是2;(2)①AP=6t,CQ=3t,如图1所示:∵M为AP的中点,N在CQ上,且CN=CQ,∴AM=AP=3t,CN=CQ=t,∵点A表示的数是﹣10,点C表示的数是6,∴点M表示的数是﹣10+3t,点N表示的数是6+t;②∵OM=|﹣10+3t|,BN=BC+CN=4+t,OM=2BN,∴|﹣10+3t|=2(4+t)=8+2t,∴﹣10+3t=±(8+2t),当﹣10+3t=8+2t时,t=18;当﹣10+3t=﹣(8+2t)时,t=.∴当t=18或t=时,OM=2BN.6.如图,在长方形中,厘米,厘米.动点从出发,以2厘米/秒的速度沿运动,到点停止运动;同时点从点出发,以4厘米/秒的速度沿运动,到点停止运动.设点运动的时间为秒().(1)点在上运动时,______,______(用含的代数式表示)点在上运动时,______,______;(用含的代数式表示)(2)当为何值,;(3)当为何值时,、两点在运动路线上相距的路程为4厘米;(4)当为何值时,.解:(1),,(2)若在上运动,若在上运动,∴当或时,(3)若、两点还未相遇,则若、两点已经相遇,则∴当或时,、两点相距的路程为(4)若在上运动,若在上运动,∴当或时,.7.如图,OC是∠AOB内的一条射线,OD、OE分别平分∠AOB、∠AOC.(1)若∠BOC=80°,∠AOC=40°,求∠DOE的度数;(2)若∠BOC=α,∠AOC=50°,求∠DOE的度数;(3)若∠BOC=α,∠AOC=β,试猜想∠DOE与α、β的数量关系并说明理由.7.解:(1)∵OD、OE分别平分∠AOB、∠AOC,∠AOC=40°,∴∠AOE=∠EOC=∠AOC=20°,∠AOB=2∠AOD=2∠DOB,∵∠BOC=∠BOD+∠COD=∠AOD+∠COD,∴∠BOC=∠AOC+2∠COD,即:80°=40°+2∠COD,∴∠COD=20°,∴∠DOE=∠COD+∠COE=20°+20°=40°;(2)∵OD、OE分别平分∠AOB、∠AOC.∴∠AOE=∠EOC=∠AOC=25°,∠AOB=2∠AOD=2∠DOB,∵∠BOC=∠BOD+∠COD=∠AOD+∠COD,∴∠BOC=∠AOC+2∠COD,即:α=50°+2∠COD,∴∠COD=,∴∠DOE=∠COD+∠COE=+25°=;(3),与β无关∵OD、OE分别平分∠AOB、∠AOC.∴∠AOE=∠EOC=∠AOC=,∠AOB=2∠AOD=2∠DOB,∵∠BOC=∠BOD+∠COD=∠AOD+∠COD,∴∠BOC=∠AOC+2∠COD,即:α=β+2∠COD,∴∠COD=,∴∠DOE=∠COD+∠COE=+=;8.已知O是直线AB上的一点,∠COD=90°,OE平分∠BOC.(1)如图①,若∠AOC=30°,∠DOE=;(2)如图①,若∠AOC=α,∠DOE=;(用含α的代数式表示);(3)将图①中的∠DOC绕顶点O顺时针旋转至图②的位置,其他条件不变,那么(2)中所求出的结论是否还成立,请说明理由.8.解:(1)∵∠AOC=30°,∴∠BOC=150°,∵OE平分∠BOC,∴∠COE=75°,又∵∠COD=90°,∴∠DOE=90°﹣75°=15°.故答案为:15°;(2)∵∠AOC=α,∴∠BOC=180°﹣α,∵OE平分∠BOC,∴∠COE=90°﹣α,又∵∠COD=90°,∴∠DOE=90°﹣(90°﹣α)=α.故答案为:α;(3)结论仍然成立,理由:∵∠AOC=α,∴∠BOC=180°﹣α,∵OE平分∠BOC,∴∠COE=∠BOC=90°﹣α,∴∠DOE=90°﹣∠COE=90°﹣(90°﹣α)=α.9.已知,点O为直线AB上一点,∠COD=90°,OE是∠AOD的平分线.(1)如图1,若∠COE=63°,求∠BOD的度数;(2)如图2,OF是∠BOC的平分线,求∠EOF的度数;(3)如图3,在(2)的条件下,OP是∠BOD的一条三等分线,∠DOP=∠BOD,若∠AOC+∠DOF=∠EOF,求∠FOP的度数.9.解:(1)∵∠COD=90°,∠COE=63°,∴∠DOE=∠COD﹣∠COE=27°,∵OE是∠AOD的平分线,∴∠AOD=2∠DOE=54°,∴∠BOD=180°﹣∠AOD=180°﹣54°=126°;答:∠BOD的度数为126°.(2)∵OE是∠AOD的平分线.∴∠AOE=,∵OF是∠BOC的平分线,∴∠BOF=∠COF==,∴∠EOF=180°﹣∠AOE﹣∠BOF=∵∠AOC+∠BOD=180°﹣90°=90°,∴∠EOF=×90°=45°,答:∠EOF的度数为45°.(3)由(2)得∠EOF=45°∵∠AOC+∠DOF=∠EOF=45°,∴∠DOF=45°﹣∠AOC,又∵∠DOF=∠COD﹣∠COF==45°﹣∠BOD,∴45°﹣∠AOC=45°﹣∠BOD,∴∠AOC=∠BOD,∵∠AOC+∠BOD=90°,∴∠AOC=30°,∠BOD=60°,∴∠DOF=45°﹣30°=15°,∵∠DOP=∠BOD,∴∠DOP=20°,∴∠FOP=∠DOF+∠DOP=15°+20°=35°10..如图①,点为直线上一点,过点作射线,将一直角三角板如图摆放().(1)若,求的大小.(2)将图①中三角板绕点旋转一定的角度得图②,使边恰好平分,问:是否平分?请说明理由.(3)将图①中的三角板绕点旋转一定的角度得图③,使边在的内部,如果,则与之间存在怎样的数量关系?请说明理由.解:(1)∵∠MON=90°,∠BOC=35°,∴∠MOC=∠MON+∠BOC=90°+35°=125°.(2)ON平分∠AOC.理由如下:∵∠MON=90°,∴∠BOM+∠AON=90°,∠MOC+∠NOC=90°.又∵OM平分∠BOC,∴∠BOM=∠MOC.∴∠AON=∠NOC.∴ON平分∠AOC.(3)∠BOM=∠NOC+40°.理由如下:∵∠CON+∠NOB=50°,∴∠NOB=50°-∠NOC.∵∠BOM+∠NOB=90°,∴∠BOM=90°-∠NOB=90°-(50°-∠NOC)=∠NOC+40°.11.已知∠AOB=90°,OC是一条可以绕点O转动的射线,ON平分∠AOC,OM平分∠BOC.(1)当射线OC转动到∠AOB的内部时,如图1,求∠MON的度数.(2)当射线OC转动到∠AOB的外时(90°<∠BOC<∠180°),如图2,∠MON的大小是否发生变化?变或者不变均说明理由.11.解:(1)如图1所示:∵ON平分∠AOC,∴∠CON=,又∵OM平分∠BOC,∴∠COM=,又∵∠AOB=∠AOC+∠BOC=90°,∴∠MON=∠CON+∠COM===45°;(2)∠MON的大小不变,如图2所示,理由如下:∵OM平分∠BOC,∴∠MOC=,又∵ON平分∠AOC,∴∠AON=,又∵∠MON=∠AON+∠AOM,∴∠MON====45°.12.如图,已知∠AOC=∠BOD=120°,∠BOC=∠AOD.(1)求∠AOD的度数;(2)若射线OB绕点O以每秒旋转20°的速度顺时针旋转,同时射线OC以每秒旋转15°的速度逆时针旋转,设旋转的时间为t秒(0<t<6),试求当∠BOC=20°时t的值;(3)若∠AOB绕点O以每秒旋转5°的速度逆时针旋转,同时∠COD绕点O以每秒旋转10°的速度逆时针旋转,设旋转的时间为t秒(0<t<18),OM平分∠AOC,ON平分∠BOD,在旋转的过程中,∠MON的度数是否发生改变?若不变,求出其值:若改变,说明理由.12.解:如图所示:(1)设∠AOD=5x°,∵∠BOC=∠AOD∴∠BOC=•5x°=3x°又∵∠AOC=∠AOB+∠BOC,∠BOD=∠DOC+∠BOC,∠AOD=∠AOB+∠BOC+∠DOC,∴∠AOC+∠BOD=∠AOD+∠BOC,又∵∠AOC=∠BOD=120°,∴5x+3x=240解得:x=30°∴∠AOD

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论