2024届新疆兵地高二数学第二学期期末考试模拟试题含解析_第1页
2024届新疆兵地高二数学第二学期期末考试模拟试题含解析_第2页
2024届新疆兵地高二数学第二学期期末考试模拟试题含解析_第3页
2024届新疆兵地高二数学第二学期期末考试模拟试题含解析_第4页
2024届新疆兵地高二数学第二学期期末考试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届新疆兵地高二数学第二学期期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设曲线在点处的切线与直线垂直,则()A. B. C.-2 D.22.函数的极小值点是()A.1 B.(1,﹣) C. D.(﹣3,8)3.已知随机变量,,若,,则()A.0.1 B.0.2 C.0.32 D.0.364.()A. B. C. D.5.为了解某高校高中学生的数学运算能力,从编号为0001,0002,…,2000的2000名学生中采用系统抽样的方法抽取一个容量为50的样本,并把样本编号从小到大排列,已知抽取的第一个样本编号为0003,则最后一个样本编号是()A.0047 B.1663 C.1960 D.19636.已知A(2,0),B(0,1)是椭圆的两个顶点,直线与直线AB相交于点D,与椭圆相交于E,F两点,若,则斜率k的值为()A. B. C.或 D.或7.设随机变量,其正态分布密度曲线如图所示,那么向正方形中随机投掷10000个点,则落入阴影部分的点的个数的估计值是()(注:若,则,)A.7539 B.7028 C.6587 D.60388.若将函数的图像向左平移个单位长度,则平移后图像的一个对称中心可以为()A. B. C. D.9.定义在上的函数为偶函数,记,,则()A. B.C. D.10.在中,内角,,所对的边分别为,,.若,,则的面积为()A.3 B. C. D.11.把一枚骰子连续掷两次,已知在第一次抛出的是奇数点的情况下,第二次抛出的也是奇数点的概率为()A. B. C. D.12.设均大于1,且,令,,,则的大小关系是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.己知矩阵,若矩阵C满足,则矩阵C的所有特征值之和为____.14.在极坐标系中,点(2,π6)到直线ρsinθ=2的距离等于15.江湖传说,蜀中唐门配置的天下第一奇毒“含笑半步癫”是由种藏红花,种南海毒蛇和种西域毒草顺次添加炼制而成,其中藏红花添加顺序不能相邻,同时南海毒蛇的添加顺序也不能相邻,现要研究所有不同添加顺序对药效的影响,则总共要进行__________此实验.16.已知,直线:和直线:分别与圆:相交于、和、,则四边形的面积为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数,.(1)若,求不等式的解集;(2)若关于的不等式对任意的恒有解,求的取值范围.18.(12分)已知复数,求下列各式的值:(Ⅰ)(Ⅱ)19.(12分)在中,角的对边分别为,且.(1)求;(2)若,求的面积.20.(12分)已知函数,.(1)当时,求在上的最大值和最小值:(2)若,恒成立,求a的取值范围.21.(12分)袋子中装有大小形状完全相同的5个小球,其中红球3个白球2个,现每次从中不放回的取出一球,直到取到白球停止.(1)求取球次数的分布列;(2)求取球次数的期望和方差.22.(10分)在平面直角坐标系中,直线的参数方程为为参数),以原点为极点,以轴非负半轴为极轴建立极坐标系,两坐标系取相同的长度单位.曲线的极坐标方程为.(1)求的普通方程和的直角坐标方程;(2)已知点是曲线上任一点,求点到直线距离的最大值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

根据函数的求导运算得到导函数,根据题干所给的垂直关系,得到方程,进而求解.【题目详解】由题意得,,∵在点处的切线与直线垂直,∴,解得,故选:A.【题目点拨】这个题目考查了函数的求导法则,涉及到导数的几何意义的应用,属于基础题.2、A【解题分析】

求得原函数的导数,令导数等于零,解出的值,并根据单调区间判断出函数在何处取得极小值,并求得极值,由此得出正确选项.【题目详解】,由得函数在上为增函数,上为减函数,上为增函数,故在处有极小值,极小值点为1.选A【题目点拨】本小题主要考查利用导数求函数的极值点,属于基础题.3、A【解题分析】

由求出,进而,由此求出.【题目详解】解:因为,,,所以,解得或(舍),由,所以.故选:A.【题目点拨】本题考查概率的求法,考查二项分布、正态分布等基础知识,考查推理论证能力、运算求解能力,是基础题.4、C【解题分析】

根据定积分的运算公式,可以求接求解.【题目详解】解:,故选C.【题目点拨】本题考查了定积分的计算,熟练掌握常见被积函数的原函数是解题的关键.5、D【解题分析】,故最后一个样本编号为,故选D.6、C【解题分析】

依题可得椭圆的方程,设直线AB,EF的方程分别为,,,且满足方程,进而求得的表达式,根据,求得的表达式,由D在AB上知,进而求得的另一个表达式,两个表达式相等即可求得k.【题目详解】依题设得椭圆的方程为,直线AB,EF的方程分别为,.设,其中,且满足方程,故,由,知,得,由D在AB上知,得.所以,化简得,解得或.故选C.【题目点拨】本题考查椭圆的方程和性质,同时考查直线和椭圆联立,求交点,以及向量共线的坐标表示,考查运算能力,属于中档题.7、C【解题分析】

由题意正方形的面积为,再根据正态分布曲线的性质,求得阴影部分的面积,利用面积比的几何概型求得落在阴影部分的概率,即可求解,得到答案.【题目详解】由题意知,正方形的边长为1,所以正方形的面积为又由随机变量服从正态分布,所以正态分布密度曲线关于对称,且,又由,即,所以阴影部分的面积为,由面积比的几何概型可得概率为,所以落入阴影部分的点的个数的估计值是,故选C.【题目点拨】本题主要考查了正态分布密度曲线的性质,以及面积比的几何概型的应用,其中解答中熟记正态分布密度曲线的性质,准确求得落在阴影部分的概率是解答的关键,着重考查了运算与求解能力,属于基础题.8、A【解题分析】

通过平移得到,即可求得函数的对称中心的坐标,得到答案.【题目详解】向左平移个单位长度后得到的图像,则其对称中心为,或将选项进行逐个验证,选A.【题目点拨】本题主要考查了三角函数的图象变换,以及三角函数的图象与性质的应用,其中解答中根据三角函数的图象变换,以及熟记三角函数的图象与性质是解答的关键,着重考查了推理与运算能力.9、C【解题分析】分析:根据f(x)为偶函数便可求出m=0,从而f(x)=,这样便知道f(x)在[0,+∞)上单调递减,根据f(x)为偶函数,便可将自变量的值变到区间[0,+∞)上:,,,然后再比较自变量的值,根据f(x)在[0,+∞)上的单调性即可比较出a,b,c的大小.详解:∵f(x)为偶函数,∴f(﹣x)=f(x).∴,∴|﹣x﹣m|=|x﹣m|,∴(﹣x﹣m)2=(x﹣m)2,∴mx=0,∴m=0.∴f(x)=∴f(x)在[0,+∞)上单调递减,并且,,c=f(0),∵0<log21.5<1∴,故答案为C点睛:(1)本题主要考查函数的奇偶性和单调性,考查对数函数的性质,意在考查学生对这些基础知识的掌握能力和分析推理能力.(2)解答本题的关键是分析出函数f(x)=的单调性,此处利用了复合函数的单调性,当x>0时,是增函数,是减函数,是增函数,所以函数是上的减函数.10、C【解题分析】

通过余弦定理可得C角,再通过面积公式即得答案.【题目详解】根据余弦定理,对比,可知,于是,根据面积公式得,故答案为C.【题目点拨】本题主要考查余弦定理和面积公式的运用,比较基础.11、C【解题分析】分析:设表示“第一次抛出的是奇数点”,表示“第二次抛出的是奇数点”,利用古典概型概率公式求出的值,由条件概率公式可得结果.详解:设表示“第一次抛出的是奇数点”,表示“第二次抛出的是奇数点”,,,在第一次抛出的是奇数点的情况下,第二次抛出的也是奇数点的概率为,故选C.点睛:本题考查概率的求法,是基础题,解题时要认真审题,注意条件概率计算公式的合理运用,同时注意区分独立事件同时发生的概率与条件概率的区别与联系.12、D【解题分析】令则t>0,且,∵,∵,故选D.二、填空题:本题共4小题,每小题5分,共20分。13、2【解题分析】

本题根据矩阵乘法运算解出矩阵C,再依据特征多项式求出特征值,即可得到所有特征值之和.【题目详解】解:由题意,可设C=,则有•=.即,解得.∴C=.∵f(λ)==(λ﹣1)(λ﹣4)+2=λ2﹣2λ+6=(λ﹣2)(λ﹣1)=0,∴特征值λ1=2,λ2=1.∴λ1+λ2=2+1=2.故答案为:2.【题目点拨】本题主要考查矩阵乘法运算及依据特征多项式求出特征值,本题不难,但有一定综合性.本题属基础题.14、1【解题分析】试题分析:在极坐标系中,点(2,π6)对应直角坐标系中坐标(3考点:极坐标化直角坐标15、.【解题分析】分析:先不考虑蛇共有种排法,再减去蛇相邻的情况,即可得出结论.详解:先不考虑蛇,先排蛇与毒草有种,再排藏红花有种,共有种,其中蛇相邻的排法共有种,,故答案为.点睛:本题主要考查排列的应用,属于中档题.常见排列数的求法为:(1)相邻问题采取“捆绑法”;(2)不相邻问题采取“插空法”;(3)有限制元素采取“优先法”;(4)特殊顺序问题,先让所有元素全排列,然后除以有限制元素的全排列数.16、8【解题分析】由题意,直线l1:x+2y=a+2和直线l2:2x﹣y=2a﹣1,交于圆心(a,1),且互相垂直,∴四边形ABCD是正方形,∴四边形ABCD的面积为4×8,故答案为:8.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】分析:(1)当时,,据此零点分段可得不等式的解集为.(2)由二次函数的性质可知,由绝对值三角不等式的性质可得.据此可得的取值范围是.详解:(1)因为,所以,当时,,即,所以,当时,,即,所以,当时,,即,所以,综上所述,原不等式的解集是.(2),.因为关于的不等式对任意的恒有解.所以,解得.点睛:绝对值不等式的解法:法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.18、(1);(2).【解题分析】

由复数的平方,复数的除法,复数的乘法运算求得下面各式值.【题目详解】(Ⅰ)因为=所以;(Ⅱ)=.【题目点拨】复数代数形式的四则运算设z1=a+bi,z2=c+di,a,b,c,d∈R.z1±z2=(a+bi)±(c+di)=(a±c)+(b±d)i.z1·z2=(a+bi)(c+di)=(ac-bd)+(bc+ad)i.19、(1)(2)【解题分析】

(1)由正弦定理把已知角的关系转化为边的关系,再由余弦定理求得,从而求得;(2)由(1)及代入可解得,再由求得面积.【题目详解】解:(1)由及正弦定理得:,∴,由余弦定理得:,∵,∴(2)由,及,得,∴∴∴的面积为.【题目点拨】本题考查正弦定理和余弦定理,考查三角形面积公式,解题关键是由正弦定理把已知角的关系转化为边的关系.20、(1)最大值是,最小值为1.(2)【解题分析】

(1)记的导函数的导数为,分析可得,结合,可得在R上是增函数,再,可得在上是增函数,即得解;(2)分,,三种情况分析的单调性,继而分析的最小值,即得解.【题目详解】(1)为表述简单起见,记的导函数的导数为.当时,,则.,所以在R上是增函数.又,所以当时,,所以在上是增函数.故在上的最大值是,最小值为.(2),.①若,即时,,所以在R上是增函数.又,所以当时,,所以在上是增函数.所以当时,.可见,当,.又是偶函数,所以恒成立.所以符合题意.②若,即时,,所以在R上是减函数.所以当时,,所以在上是减函数.所以当时,.这与恒成立矛盾,所以不符合题意.③当时,.由,得.由的图象,知存在唯一的,使得.当时,.所以在上是减函数.所以当时,,所以在上是减函数.所以当时,.这与恒成立矛盾,所以不符合题意.综上,a的取值范围是.【题目点拨】本题考查了函数与导数综合,考查了二次求导,含参函数的最值,不等式恒成立问题,考查了学生综合分析,转化划归,分类讨论,数学运算的能力,属于较难题.21、(1)见解析(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论