2024届浙江省宁波诺丁汉大学附中数学高二第二学期期末质量跟踪监视试题含解析_第1页
2024届浙江省宁波诺丁汉大学附中数学高二第二学期期末质量跟踪监视试题含解析_第2页
2024届浙江省宁波诺丁汉大学附中数学高二第二学期期末质量跟踪监视试题含解析_第3页
2024届浙江省宁波诺丁汉大学附中数学高二第二学期期末质量跟踪监视试题含解析_第4页
2024届浙江省宁波诺丁汉大学附中数学高二第二学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届浙江省宁波诺丁汉大学附中数学高二第二学期期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列有关命题的说法正确的是A.“”是“”的充分不必要条件B.“x=2时,x2-3x+2=0”的否命题为真命题C.直线:,:,的充要条件是D.命题“若,则”的逆否命题为真命题2.已知函数是定义在上的奇函数,若对于任意的实数,都有,且当时,,则的值为()A.-1 B.-2 C.2 D.13.已知随机变量,若,则分别是()A.6和5.6 B.4和2.4 C.6和2.4 D.4和5.64.若曲线在处的切线,也是的切线,则()A. B.1 C.2 D.5..若直线是曲线的一条切线,则实数的值为()A. B. C. D.6.在第二届乌镇互联网大会中,为了提高安保的级别同时又为了方便接待,现将其中的五个参会国的人员安排酒店住宿,这五个参会国要在、、三家酒店选择一家,且每家酒店至少有一个参会国入住,则这样的安排方法共有A.种 B.种C.种 D.种7.现有60个机器零件,编号从1到60,若从中抽取6个进行检验,用系统抽样的方法确定所抽的编号可以是()A.3,13,23,33,43,53B.2,14,26,38,40,52C.5,8,31,36,48,54D.5,10,15,20,25,308.已知向量是空间的一组基底,则下列可以构成基底的一组向量是()A.,, B.,,C.,, D.,,9.函数(为自然对数的底数)的递增区间为()A. B. C. D.10.函数的定义域为()A. B. C. D.11.如图:在直棱柱中,,,分别是A1B1,BC,CC1的中点,则直线PQ与AM所成的角是()A. B. C. D.12.已知圆与双曲线的渐近线相切,则的离心率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.给出下列命题:①“”是“”的充分必要条件;②命题“若,则”的否命题是“若,则”;③设,,则“且”是“”的必要不充分条件;④设,,则“”是“”的必要不充分条件.其中正确命题的序号是_________.14.已知函数,实数满足,则的值为__________.15.在平面直角坐标系中,圆的方程为,若直线上至少存在一点,使得以该点为圆心,1为半径的圆与圆有公共点,则的最大值为__________.16.若随机变量,已知,则_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)网购是现在比较流行的一种购物方式,现随机调查50名个人收入不同的消费者是否喜欢网购,调杳结果表明:在喜欢网购的25人中有19人是低收入的人,另外6人是高收入的人,在不喜欢网购的25人中有8人是低收入的人,另外17人是高收入的人.(1)试根据以上数据完成列联表,并用独立性检验的思想,指出有多大把握认为是否喜欢网购与个人收入高低有关系;喜欢网购不喜欢网购总计低收入的人高收入的人总计(2)将5名喜欢网购的消费者编号为1、2、3、4、5,将5名不喜欢网购的消费者编号也记作1、2、3、4、5,从这两组人中各任选一人讲行交流,求被选出的2人的编号之和为2的倍数的概率.参考公式:参考数据:0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82818.(12分)已知知x为正实数,n为正偶数,在的展开式中,(1)若前3项的系数依次成等差数列,求n的值及展开式中的有理项;(2)求奇数项的二项式系数的和与偶数项的二项式系数的和,并比较它们的大小.19.(12分)已知数列的首项,等差数列满足.(1)求数列,的通项公式;(2)设,求数列的前项和.20.(12分)已知椭圆:的离心率为,点,分别为椭圆的左右顶点,点在上,且面积的最大值为.(Ⅰ)求椭圆的方程;(Ⅱ)设为的左焦点,点在直线上,过作的垂线交椭圆于,两点.证明:直线平分线段.21.(12分)四棱锥中,底面是中心为的菱形,,.(1)求证:平面;(2)若直线与平面所成的角为,求二面角正弦值.22.(10分)盒子中放有大小形状完全相同的个球,其中个红球,个白球.(1)某人从这盒子中有放回地随机抽取个球,求至少抽到个红球的概率;(2)某人从这盒子中不放回地从随机抽取个球,记每抽到个红球得红包奖励元,每抽到个白球得到红包奖励元,求该人所得奖励的分布列和数学期望.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】A选项不正确,由于可得,故“”是“”的必要不充分条件;B选项不正确,“时,”的逆命题为“当时,”,是假命题,故其否命题也为假;C选项不正确,若两直线平行,则,解得;D选项正确,角相等时函数值一定相等,原命题为真命题,故其逆否命题为真,故选:D.2、A【解题分析】

利用函数的奇偶性以及函数的周期性转化求解即可.【题目详解】因为f(x)是奇函数,且周期为2,所以f(﹣2017)+f(2018)=﹣f(2017)+f(2018)=﹣f(1)+f(0).当x∈[0,2)时,f(x)=log2(x+1),所以f(﹣2017)+f(2018)=﹣1+0=﹣1.故选:A.【题目点拨】本题考查函数的奇偶性以及函数的周期性的应用,考查计算能力.3、B【解题分析】分析:根据变量ξ~B(10,0.4)可以根据公式做出这组变量的均值与方差,随机变量η=8﹣ξ,知道变量η也符合二项分布,故可得结论.详解:∵ξ~B(10,0.4),∴Eξ=10×0.4=4,Dξ=10×0.4×0.6=2.4,∵η=8﹣ξ,∴Eη=E(8﹣ξ)=4,Dη=D(8﹣ξ)=2.4故选:B.点睛:本题考查变量的均值与方差,均值反映数据的平均水平,而方差反映数据的波动大小,属于基础题.方差能够说明数据的离散程度,期望说明数据的平均值,从选手发挥稳定的角度来说,应该选择方差小的.4、C【解题分析】

求出的导数,得切线的斜率,可得切线方程,再设与曲线相切的切点为(m,n),得的导数,由导数的几何意义求出切线的斜率,解方程可得m,n,进而得到b的值.【题目详解】函数的导数为y=ex,曲线在x=0处的切线斜率为k==1,则曲线在x=0处的切线方程为y﹣1=x;函数的导数为y=,设切点为(m,n),则=1,解得m=1,n=1,即有1=ln1+b,解得b=1.故选A.【题目点拨】本题主要考查导数的几何意义,求切线方程,属于基础题.5、A【解题分析】

设切点,根据导数的几何意义,在切点处的导数是切点处切线的斜率,求.【题目详解】设切点,,解得.故选A.【题目点拨】本题考查了已知切线方程求参数的问题,属于简单题型,这类问题的关键是设切点,利用切点既在切线又在曲线上,以及利用导数的几何意义共同求参数.6、D【解题分析】

根据题意,分2步进行分析:①把5个个参会国的人员分成三组,一种是按照1、1、3;另一种是1、2、2;由组合数公式可得分组的方法数目,②,将分好的三组对应三家酒店;由分步计数原理计算可得答案.【题目详解】根据题意,分2步进行分析:

①、五个参会国要在a、b、c三家酒店选择一家,且这三家至少有一个参会国入住,

∴可以把5个国家人分成三组,一种是按照1、1、3;另一种是1、2、2

当按照1、1、3来分时共有C53=10种分组方法;

当按照1、2、2来分时共有种分组方法;

则一共有种分组方法;

②、将分好的三组对应三家酒店,有种对应方法;

则安排方法共有种;

故选D.【题目点拨】本题考查排列组合的应用,涉及分类、分步计数原理的应用,对于复杂一点的计数问题,有时分类以后,每类方法并不都是一步完成的,必须在分类后又分步,综合利用两个原理解决.7、A【解题分析】

由题意可知:606【题目详解】∵根据题意可知,系统抽样得到的产品的编号应该具有相同的间隔,且间隔是606【题目点拨】本题考查了系统抽样的原则.8、C【解题分析】

空间的一组基底,必须是不共面的三个向量,利用向量共面的充要条件可证明、、三个选项中的向量均为共面向量,利用反证法可证明中的向量不共面【题目详解】解:,,,共面,不能构成基底,排除;,,,共面,不能构成基底,排除;,,,共面,不能构成基底,排除;若、,共面,则,则、、为共面向量,此与为空间的一组基底矛盾,故、,可构成空间向量的一组基底.故选:.【题目点拨】本题主要考查了空间向量基本定理,向量共面的充要条件等基础知识,判断向量是否共面是解决本题的关键,属于中档题.9、D【解题分析】,由于恒成立,所以当时,,则增区间为.,故选择D.10、D【解题分析】

分析每个根号下的范围,取交集后得到定义域.【题目详解】因为,所以,则定义域为.故选:D.【题目点拨】本题考查函数含根号的函数定义问题,难度较易.注意根号下大于等于零即可.11、D【解题分析】

建立空间直角坐标系,结合直线的方向向量确定异面直线所成的角即可.【题目详解】以点A为坐标原点,建立如图所示的空间直角坐标系,设,则,据此可得:,,故,即直线PQ与AM所成的角是.本题选择D选项.【题目点拨】本题主要考查空间向量的应用,异面直线所成的角的求解等知识,意在考查学生的转化能力和计算求解能力.12、B【解题分析】

由题意可得双曲线的渐近线方程为,根据圆心到切线的距离等于半径,求出的关系,进而得到双曲线的离心率,得到答案.【题目详解】由题意,根据双曲线的渐近线方程为.根据圆的圆心到切线的距离等于半径1,可得,整理得,即,又由,则,可得即双曲线的离心率为.故选:B.【题目点拨】本题考查了双曲线的几何性质——离心率的求解,其中求双曲线的离心率(或范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程,即可得的值(范围).二、填空题:本题共4小题,每小题5分,共20分。13、②④【解题分析】

逐项判断每个选项的正误得到答案.【题目详解】①当时,成立,但不成立,所以不具有必要性,错误②根据否命题的规则得命题“若,则”的否命题是“若,则”;,正确.③因为且”是“”的充分不必要条件,所以错误④因为且,所以“”是“”的必要不充分条件.正确.故答案为②④【题目点拨】本题考查了充分必要条件,否命题,意在考查学生的综合知识运用.14、【解题分析】

根据图像分析,设,代入函数求值即可.【题目详解】由图像可知,设,,即.故填:1.【题目点拨】本题考查了的图像,以及对数运算法则,属于基础题型,本题的关键是根据图像,判断和的正负,去绝对值.15、【解题分析】

∵圆C的方程为x2+y2-8x+15=0,整理得:(x-4)2+y2=1,即圆C是以(4,0)为圆心,1为半径的圆;又直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,∴只需圆C′:(x-4)2+y2=4与直线y=kx-2有公共点即可.设圆心C(4,0)到直线y=kx-2的距离为d,即3k2≤4k,∴0≤k≤,故可知参数k的最大值为.16、0.363【解题分析】

根据随机变量服从正态分布,根据曲线的对称性,得到的值,即可求解.【题目详解】由题意,随机变量服从正态分布,所以图象关于对称,因为,根据曲线的对称性,可得.【题目点拨】本题主要考查了正态分布的对称性的应用,其中解答中熟练应用正态分布曲线的对称性,合理计算是解答的关键,着重考查了推理与运算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)填表见解析,有99.5%的把握认为是否喜欢网购与个人收入高低有关系;(2)【解题分析】

(1)表格填空,然后根据公式计算的值,再根据表格判断相应关系;(2)利用古典概型的概率计算方法求解概率即可.【题目详解】解:(1)列联表如下,喜欢网购不喜欢网购总计低收入的人19827高收入的人61723总计252550;;故有99.5%的把握认为是否喜欢网购与个人收入高低有关系;(2)由题意,共有种情况,和为2的有1种,和为4的有3种,和为6的有5种,和为8的有3种,和为10的有1种,故被选出的2人的编号之和为2的倍数概率为.【题目点拨】独立性检验计算有多大把握的步骤:(1)根据列联表计算出的值;(2)找到参考表格中第一个比大的值,记下对应的概率;(3)有多大把握的计算:对应概率.18、(1),有理项有三项,分别为:;(2)128,128,相等【解题分析】

(1)首先找出展开式的前3项,然后利用等差数列的性质即可列出等式,求出n,于是求出通项,再得到有理项;(2)分别计算偶数项和奇数项的二项式系数和,比较大小即可.【题目详解】(1)二项展开式的前三项的系数分别为:,而前三项构成等差数列,故,解得或(舍去);所以,当时,为有理项,又且,所以符合要求;故有理项有三项,分别为:;(2)奇数项的二项式系数和为:,偶数项的二项式系数和为:,故奇数项的二项式系数的和等于偶数项的二项式系数的和.【题目点拨】本题主要考查二项式定理的通项,二项式系数和,注意二项式系数和与系数和的区别,意在考查学生的计算能力和分析能力,难度中等.19、(1),;(2).【解题分析】分析:(1)由题意,当时,,当时,化简得,得数列是首项为1,公比为2等比数列,即可求解,进而得到;(2)由(1)可得,利用乘公比错位相减法,即可求解数列的和.详解:(1)当时,当时,相减得∴数列是首项为1,公比为2等比数列………………3分……4分∴∴……6分(2)……7分……8分相减得……12分点睛:本题主要考查等差、等比数列的通项公式、数列求和的“错位相减法”,此类题目是数列问题中的常见题型,对考生计算能力要求较高,解答中确定通项公式是基础,准确计算求和是关键,易错点是在“错位”之后求和时,弄错等比数列的项数.本题将数列与解析几何结合起来,适当增大了难度,能较好的考查考生的数形结合思想、逻辑思维能力及基本计算能力等.20、(Ⅰ);(Ⅱ)证明见解析.【解题分析】分析:(1)由题意可知,,结合,即可求得椭圆方程.(2)由题意设,,,线段的中点.则,①易知平分线段;②,,因点,在椭圆上,根据点差法整理得,所以,直线平分线段.详解:解:(Ⅰ)由椭圆的性质知当点位于短轴顶点时面积最大.∴有,解得,故椭圆的方程为.(Ⅱ)证明:设,,,线段的中点.则,,由(Ⅰ)可得,则直线的斜率为.当时,直线的斜率不存在,由椭圆性质易知平分线段,当时,直线的斜率.∵点,在椭圆上,,整理得:,又,,∴,直线的斜率为,∵直线的斜率为,∴直线平分线段.点睛:题目问题涉及到弦的斜率与弦的中点在一起时,就要想到“点差法”.(1)设点,其中点坐标为,则(2)把代入曲线的方程,并作差,利用平方差公式对结果因式分解,得到与两点斜率和中点坐标有关的方程,再根据具体题干内容进行分析.(3)点差法常见题型有:求中点弦方程、求(过定点、平行弦)弦中点轨迹、垂直平分线、定值问题。21、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论