




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届浙江省杭州市名校协作体数学高二下期末联考试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.等差数列an中的a2 , A.5 B.4 C.3 D.22.口袋中装有标号为1,2,3,4,5,6且大小相同的6个球,从袋中一次摸出2个球,记下号码并放回,若这2个号码之和是4的倍数或这2个球号码之和是3的倍数,则获奖.某人从袋中一次摸出2个球,其获奖的概率为()A. B. C. D.3.从不同品牌的4台“快译通”和不同品牌的5台录音机中任意抽取3台,其中至少有“快译通”和录音机各1台,则不同的取法共有()A.140种 B.84种 C.70种 D.35种4.在数列中,,则等于()A.9 B.10 C.27 D.815.高三某班有60名学生(其中女生有20名),三好学生占,而且三好学生中女生占一半,现在从该班任选一名学生参加座谈会,则在已知没有选上女生的条件下,选上的是三好学生的概率是()A. B. C. D.6.甲乙两人有三个不同的学习小组,,可以参加,若每人必须参加并且仅能参加一个学习小组,则两人参加同一个小组的概率为()A.B.C.D.7.设p、q是两个命题,若是真命题,那么()A.p是真命题且q是假命题 B.p是真命题且q是真命题C.p是假命题且q是真命题 D.p是假命题且q是假命题8.执行如图所示的程序框图,若输出的结果为,则输入的正整数a的可能取值的集合是(
)A. B.C. D.9.已知函数,且,其中是的导函数,则()A. B. C. D.10.若如下框图所给的程序运行结果为,那么判断框中应填入的关于的条件是()A. B. C. D.11.以,为端点的线段的垂直平分线方程是A. B. C. D.12.函数有极值的充要条件是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.用数学归纳法证明时,从“到”,左边需增乘的代数式是___________.14.若随机变量,则,.已知随机变量,则__________.15.已知甲、乙、丙3名运动员击中目标的概率分别为,,,若他们3人分别向目标各发1枪,则三枪中至少命中2次的概率为______.16.已知球的半径为1,、是球面上的两点,且,若点是球面上任意一点,则的取值范围是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列的前项和为,且满足,.(1)求,,的值,并猜想数列的通项公式并用数学归纳法证明;(2)令,求数列的前项和.18.(12分)已知的展开式中有连续三项的系数之比为1︰2︰3,(1)这三项是第几项?(2)若展开式的倒数第二项为112,求x的值.19.(12分)某技术人员在某基地培育了一种植物,一年后,该技术人员从中随机抽取了部分这种植物的高度(单位:厘米)作为样本(样本容量为)进行统计,绘制了如下频率分布直方图,已知抽取的样本植物高度在内的植物有8株,在内的植物有2株.(Ⅰ)求样本容量和频率分布直方图中的,的值;(Ⅱ)在选取的样本中,从高度在内的植物中随机抽取3株,设随机变量表示所抽取的3株高度在内的株数,求随机变量的分布列及数学期望;(Ⅲ)据市场调研,高度在内的该植物最受市场追捧.老王准备前往该基地随机购买该植物50株.现有两种购买方案,方案一:按照该植物的不同高度来付费,其中高度在内的每株10元,其余高度每株5元;方案二:按照该植物的株数来付费,每株6元.请你根据该基地该植物样本的统计分析结果为决策依据,预测老王采取哪种付费方式更便宜?20.(12分)设函数.(1)求的单调区间;(2)求使对恒成立的的取值范围.21.(12分)设实数满足,实数满足.(1)若,且为真,求实数的取值范围;(2)若其中且是的充分不必要条件,求实数的取值范围.22.(10分)数列满足).(1)计算,并由此猜想通项公式;(2)用数学归纳法证明(1)中的猜想.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
求导,根据导数得到a2,a4030是方程x【题目详解】由题意可知:f'x=x2-8x+6,又a2,a4030是函数f∴log2【题目点拨】本题考查了等差数列的性质,函数的极值,对数运算,综合性强,意在考查学生的综合应用能力.2、A【解题分析】分析:先求出基本事件的总数,再求出这2个号码之和是4的倍数或这2个球号码之和是3的倍数的基本事件,再根据古典概型的概率计算公式求解即可.详解:从6个球中一次摸出2个球,共有种,2个号码之和是4的倍数或这2个球号码之和是3的倍数,共有:9种,获奖的概率为.故选A.点睛:求古典概型的概率的关键是求试验的基本事件的总数和事件A包含的基本事件的个数,这就需要正确列出基本事件,基本事件的表示方法有列举法、列表法和树形图法,具体应用时可根据需要灵活选择.3、C【解题分析】分析:从中任意取出三台,其中至少要有“快译通”和录音机各1台,有两种方法,一是2台和1台;二是1台和2台,分别求出取出的方法,即可求出所有的方法数.详解:由题意知本题是一个计数原理的应用,从中任意取出三台,其中至少要有“快译通”和录音机各1台,快译通2台和录音机1台,取法有种;快译通1台和录音机2台,取法有种,根据分类计数原理知共有种.故选:C.点睛:本题考查计数原理的应用,考查分类和分步的综合应用,本题解题的关键是看出符合条件的事件包含两种情况,是一个中档题目.4、C【解题分析】
利用题设中递推公式,构造等比数列,求得等比数列的通项公式,即可求解.【题目详解】由题意,在数列中,,即可得数列表示首项,公比的等比数列,所以,故选C.【题目点拨】本题主要考查了等比数列的定义,以及等比数列的通项公式的应用,其中解答中熟记等比数列的定义和等比数列的通项公式,准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.5、B【解题分析】
根据所给的条件求出男生数和男生中三好学生数,本题可以看作一个古典概型,试验发生包含的事件是从40名男生中选出一个人,共有40种结果,满足条件的事件是选到的是一个三好学生,共有5种结果,根据概率公式得到结果.【题目详解】因为高三某班有60名学生(其中女生有20名),三好学生占,而且三好学生中女生占一半,所以本班有40名男生,男生中有5名三好学生,由题意知,本题可以看作一个古典概型,试验发生包含的事件是从40名男生中选出一个人,共有40种结果,满足条件的事件是选到的是一个三好学生,共有5种结果,所以没有选上女生的条件下,选上的是三好学生的概率是,故选B.【题目点拨】该题考查的是有关古典概型的概率求解问题,在解题的过程中,需要首先求得本班的男生数和男生中的三好学生数,根据古典概型的概率公式求得结果.6、A【解题分析】依题意,基本事件的总数有种,两个人参加同一个小组,方法数有种,故概率为.7、C【解题分析】
先判断出是假命题,从而判断出p,q的真假即可.【题目详解】若是真命题,则是假命题,则p,q均为假命题,故选D.【题目点拨】该题考查的是有关复合命题的真值表的问题,在解题的过程中,首先需要利用是真命题,得到是假命题,根据“或”形式的复合命题真值表求得结果.8、A【解题分析】由题意,循环依次为,,所以可能取值的集合为,故选A.9、A【解题分析】分析:求出原函数的导函数,然后由f′(x)=2f(x),求出sinx与cosx的关系,同时求出tanx的值,化简要求解的分式,最后把tanx的值代入即可.详解:因为函数f(x)=sinx-cosx,所以f′(x)=cosx+sinx,由f′(x)=2f(x),得:cosx+sinx=2sinx-2cosx,即3cosx=sinx,所以.所以=.故答案为A.点睛:(1)本题主要考查求导和三角函数化简求值,意在考查学生对这些知识的掌握水平和分析转化计算能力.(2)解答本题的关键是=.这里利用了“1”的变式,1=.10、D【解题分析】分析:根据赋值框中对累加变量和循环变量的赋值,先判断后执行,假设满足条件,依次执行循环,到累加变量S的值为35时,再执行一次k=k+1,此时判断框中的条件不满足,由此可以得到判断框中的条件.详解:框图首先给累加变量S赋值1,给循环变量k赋值1.判断1>6,执行S=1+1=11,k=1﹣1=9;判断9>6,执行S=11+9=20,k=9﹣1=8;判断8>6,执行S=20+8=28,k=8﹣1=7;判断7>6,执行S=28+7=35,k=6;判断6≤6,输出S的值为35,算法结束.所以判断框中的条件是k>6?.故答案为:D.点睛:本题考查了程序框图中的循环结构,考查了当型循环,当型循环是先判断后执行,满足条件执行循环,不满足条件时,算法结束,此题是基础题.11、B【解题分析】
求出的中点坐标,求出的垂直平分线的斜率,然后求出垂直平分线方程.【题目详解】因为,,所以的中点坐标,直线的斜率为,所以的中垂线的斜率为:,所以以,为端点的线段的垂直平分线方程是,即.故选:B【题目点拨】本题考查直线的一般式方程与直线的垂直关系,直线方程的求法,考查计算能力.12、C【解题分析】因为,所以,即,应选答案C.二、填空题:本题共4小题,每小题5分,共20分。13、.【解题分析】
从到时左边需增乘的代数式是,化简即可得出.【题目详解】假设时命题成立,则,当时,从到时左边需增乘的代数式是.故答案为:.【题目点拨】本题考查数学归纳法的应用,考查推理能力与计算能力,属于中档题.14、0.8185【解题分析】分析:根据正态曲线的对称性和特殊区间上的概率可求出和,然后求出这两个概率的和即可.详解:由题意得,∴,,∴.点睛:本题考查正态分布,考查正态曲线的对称性和三个特殊区间上的概率,解题的关键是将所求概率合理地转化为特殊区间上的概率求解.15、【解题分析】
设事件A表示“甲命中”,事件B表示“乙命中”,事件C表示“丙命中”,则,,,他们3人分别向目标各发1枪,则三枪中至少命中2次的概率为:,由此能求出结果.【题目详解】解:设事件A表示“甲命中”,事件B表示“乙命中”,事件C表示“丙命中”,则,,,他们3人分别向目标各发1枪,则三枪中至少命中2次的概率为:.故答案为.【题目点拨】本题考查概率的求法,考查相互独立事件概率乘法公式等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.16、【解题分析】分析:以球心为坐标原点建立空间直角坐标系,设点的坐标,用来表示,进而求出答案.详解:由题可知,则,以球心为坐标原点,以为轴正方向,平面的垂线为轴建立空间坐标系,则,,设,在球面上,则设,当直线与圆相切时,取得最值.由得故答案为点睛:本题考查了空间向量数量积的运算,使用坐标法可以简化计算,动点问题中变量的取值范围是解此类问题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),,,,,见解析;(2)【解题分析】
(1)计算,,,猜想可得,然后依据数学归纳法的证明步骤,可得结果.(2)根据(1)得,然后利用裂项相消法,可得结果.【题目详解】(1)当时,,即,解得当时,,即,解得当时,,即,解得猜想,下面用数学归纳法证明:当时,,猜想成立假设当时,猜想成立,即,,则当时,,,,所以猜想成立.综上所述,对于任意,均成立.(2)由(1)得则数列的前项和【题目点拨】本题考查数学归纳法证明方法以及裂项相消法求和,熟练掌握数学归纳法的步骤,同时对常用的求和方法要熟悉,属基础题.18、(1)第5、6、7项;(2)或;【解题分析】
(1)先求展开式各项的系数,由有连续三项的系数之比为1︰2︰3,求出及项数;(2)再由通项公式写出倒数第二项,由它等于112求出.【题目详解】(1)展开式各项系数为,由题意,即,解得,∴这三项是第5、6、7项.(2)倒数第二项为,∴==112,,,即,,∴或.【题目点拨】本题考查二项式定理,考查组合数公式的计算,题中难点有两个,一个是把组合数用阶乘表示出来后求解较方便,一个是解方程时要先取以2为底的对数后才能求解.19、(Ⅰ),,;(Ⅱ)分布列见解析,;(Ⅲ)方案一付费更便宜.【解题分析】
(Ⅰ)由题目条件及频率分布直方图能求出样本容量n和频率分布直方图中的x,y.(Ⅱ)由题意可知,高度在[80,90)内的株数为5,高度在[90,100]内的株数为2,共7株.抽取的3株中高度在[80,90)内的株数X的可能取值为1,2,3,分别求出相应的概率,由此能求出X的分布列和E(X).(Ⅲ)根据(Ⅰ)所得结论,分别计算按照方案一购买应付费和按照方案二购买应付费,比较结果即可得按照方案一付费更便宜.【题目详解】(Ⅰ)由题意可知,样本容量,,.(Ⅱ)由题意可知,高度在[80,90)内的株数为5,高度在[90,100]内的株数为2,共7株.抽取的3株中高度在[80,90)内的株数X的可能取值为1,2,3,则,,,∴X的分布列为:X123P故.(Ⅲ)根据(Ⅰ)所得结论,高度在内的概率为,按照方案一购买应付费元,按照方案二购买应付费元,故按照方案一付费更便宜.【题目点拨】本题考查频率分布直方图、分布列和数学期望,考查能否根据频率分布直方图得出每一组的概率以及一组的数据计算总体,求随机变量的分布列的主要步骤:①明确随机变量的取值,并确定随机变量服从何种概率分布;②求每一个随机变量取值的概率;③列成表格,意在考查学生的转化能力和计算求解能力,属于中等题.20、(1)见解析;(2)【解题分析】
(1)求导后得,再对分三种情况讨论可得;(2)先由,解得,从
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年剑桥五级CPE考试试卷:阅读技巧与理解深度分析试题
- 环保污水处理设备采购与安装服务协议
- 2025年柴油发动机电控装置项目规划申请报告
- 2025年保健按摩师(保健按摩技术市场前景分析报告)职业技能鉴定试卷
- 2025年北京银行公务员录用考试银监财经类专业试卷
- 智能制造设备销售与租赁协议
- 市场开发合作协议条款说明
- 企业合作经验及信誉度证明书(7篇)
- 市场开拓及业务合作协议条款说明
- 各处风景小学作文700字6篇
- 2024-2025年材料员考试题库含答案【典型题】
- 上海市杨浦区2024-2025学年七年级(下)期末语文试题(含答案)
- 2025年云南省公务员考试(行测)真题试卷(含答案)
- 2025年高考全国二卷英语高考真题
- 2024年湖北省中考地理·生物试卷(含答案解析)
- 新高考志愿填报指导报考表
- 商品房销售代理合同
- 智能化建筑工程检验批质量验收记录文本表(共69页)
- GB∕T 40740-2021 堆焊工艺评定试验
- 检验检测机构内审示例(41页)正式完美版
- 借名购房协议书(律师制作最新本)
评论
0/150
提交评论