2024届黑龙江青冈县一中数学高二第二学期期末检测模拟试题含解析_第1页
2024届黑龙江青冈县一中数学高二第二学期期末检测模拟试题含解析_第2页
2024届黑龙江青冈县一中数学高二第二学期期末检测模拟试题含解析_第3页
2024届黑龙江青冈县一中数学高二第二学期期末检测模拟试题含解析_第4页
2024届黑龙江青冈县一中数学高二第二学期期末检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届黑龙江青冈县一中数学高二第二学期期末检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.复数,则对应的点所在的象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.在直角坐标系中,一个质点从出发沿图中路线依次经过,,,,按此规律一直运动下去,则()A.1006 B.1007 C.1008 D.10093.若,则的值为()A. B. C. D.4.已知椭圆的右焦点为,短轴的一个端点为,直线与椭圆相交于、两点.若,点到直线的距离不小于,则椭圆离心率的取值范围为A. B. C. D.5.下列5个命题中:①平行于同一直线的两条不同的直线平行;②平行于同一平面的两条不同的直线平行;③若直线与平面没有公共点,则;④用一个平面截一组平行平面,所得的交线相互平行;⑤若,则过的任意平面与的交线都平行于.其中真命题的个数是()A.2 B.3 C.4 D.56.若函数为奇函数,且在上为减函数,则的一个值为()A. B. C. D.7.甲、乙两人独立地解同一问题,甲解决这个问题的概率是,乙解决这个问题的概率是,那么恰好有1人解决这个问题的概率是()A. B.C. D.8.设随机变量ξ服从正态分布N(3,4),若P(ξ<2a-3)=P(ξ>a+2),则实数a的值为A.5 B.3 C.53 D.9.已知定义在上的函数满足:函数的图象关于直线对称,且当成立(是函数的导函数),若,,,则的大小关系是()A. B. C. D.10.函数是定义在上的奇函数,当时,,则A. B. C. D.11.已知偶函数在单调递减,则不等式的解集为()A. B. C. D.12.已知定义在上的函数的导函数为,满足,且,则不等式的解集为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设为实数时,实数的值是__________.14.函数y=3sin(2x+π15.有红心1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌上,现从中任意抽取2张,则抽到的牌中至少有1张红心的概率是_________.16.已知、满足约束条件,若目标函数的最大值为13,则实数______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)若,求证:.18.(12分)如图,在四棱锥中,平面,四边形为正方形,,是的中点,是的中点.(1)求此四棱锥的体积;(2)求证:平面;(3)求证:平面平面.19.(12分)已知,,设,且,求复数,.20.(12分)已知向量m=(3sin(1)若m⋅n=1(2)记f(x)=m⋅n在ΔABC中角A,B,C的对边分别为a,b,c,且满足(2a-c)21.(12分)在新高考改革中,打破文理分科的“(选)”模式:我省实施“”,“”代表语文、数学、外语门高考必考科目,“”是物理、历史两科选一科,这里称之为主选,“”是化学、生物、政治、地理四科选两科,这里称为辅选,其中每位同学选哪科互不影响且等可能.(Ⅰ)甲、乙两同学主选和辅选的科目都相同的概率;(Ⅱ)有一个人的学习小组,主选科目是物理,问:这人中辅选生物的人数是一个随机变量,求的分布列及期望.22.(10分)已知数列的前n项和,.(1)求数列的通项公式;(2)设,,求数列的前n项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

先求得的共轭复数,由此判断出其对应点所在象限.【题目详解】依题意,对应点为,在第一象限,故选A.【题目点拨】本小题主要考查共轭复数的概念,考查复数对应点所在象限,属于基础题.2、D【解题分析】

分析:由题意得,即,观察前八项,得到数列的规律,求出即可.详解:由直角坐标系可知,,即,由此可知,数列中偶数项是从1开始逐渐递增的,且都等于所在的项数除以2,则,每四个数中有一个负数,且为每组的第三个数,每组的第一个数为其组数,每组的第一个数和第三个数是互为相反数,因为,则,,故选D.点睛:本题考查了归纳推理的问题,关键是找到规律,属于难题.归纳推理的一般步骤:一、通过观察个别情况发现某些相同的性质.二、从已知的相同性质中推出一个明确表述的一般性命题(猜想).常见的归纳推理分为数的归纳和形的归纳两类:(1)数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2)形的归纳主要包括图形数目的归纳和图形变化规律的归纳.3、A【解题分析】(a0+a2+a4)2-(a1+a3)2选A4、C【解题分析】

根据椭圆对称性可证得四边形为平行四边形,根据椭圆定义可求得;利用点到直线距离构造不等式可求得,根据可求得的范围,进而得到离心率的范围.【题目详解】设椭圆的左焦点为,为短轴的上端点,连接,如下图所示:由椭圆的对称性可知,关于原点对称,则又四边形为平行四边形又,解得:点到直线距离:,解得:,即本题正确选项:【题目点拨】本题考查椭圆离心率的求解,重点考查椭圆几何性质,涉及到椭圆的对称性、椭圆的定义、点到直线距离公式的应用等知识.5、C【解题分析】

根据平行公理判定①的真假;根据线线位置关系,判定②的真假;根据线面平行的概念,判定③的真假;根据面面平行的性质,判断④的真假;根据线面平行的性质,判断⑤的真假.【题目详解】对于①,根据平行公理,平行于同一直线的两条不同的直线平行,①正确;对于②,平行于同一平面的两条不同的直线,可能平行、异面或相交;②错误;对于③,根据线面平行的概念,若直线与平面没有公共点,所以,③正确;对于④,根据面面平行的性质,用一个平面截一组平行平面,所得的交线相互平行,④正确;对于⑤,根据线面平行的性质,若,则过的任意平面与的交线都平行于,⑤正确.故选:C【题目点拨】本题主要考查线面关系、面面关系相关命题的判定,熟记平面的性质,平行公理,线面位置关系,面面位置关系即可,属于常考题型.6、D【解题分析】由题意得,∵函数为奇函数,∴,故.当时,,在上为增函数,不合题意.当时,,在上为减函数,符合题意.选D.7、B【解题分析】分析:先分成两个互斥事件:甲解决问题乙未解决问题和甲解决问题乙未解决问题,再分别求概率,最后用加法计算.详解:因为甲解决问题乙未解决问题的概率为p1(1-p2),甲未解决问题乙解决问题的概率为p2(1-p1),则恰有一人解决问题的概率为p1(1-p2)+p2(1-p1).故选B.点睛:本题考查互斥事件概率加法公式,考查基本求解能力.8、D【解题分析】

根据正态分布的特征,可得2a-3+a+2=6,求解即可得出结果.【题目详解】因为随机变量ξ服从正态分布N3,4,P根据正态分布的特征,可得2a-3+a+2=6,解得a=7故选D【题目点拨】本题主要考查正态分布的特征,熟记正态分布的特征即可,属于基础题型.9、A【解题分析】

由导数性质推导出当x∈(﹣∞,0)或x∈(0,+∞)时,函数y=xf(x)单调递减.由此能求出结果.【题目详解】∵函数的图象关于直线对称,∴关于轴对称,∴函数为奇函数.因为,∴当时,,函数单调递减,当时,函数单调递减.,,,,故选A【题目点拨】利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造.构造辅助函数常根据导数法则进行:如构造,构造,构造,构造等10、D【解题分析】

利用奇函数的性质求出的值.【题目详解】由题得,故答案为:D【题目点拨】(1)本题主要考查奇函数的性质,意在考查学生对该知识的掌握水平和分析推理计算能力.(2)奇函数f(-x)=-f(x).11、B【解题分析】

因为函数是偶函数,所以,那么不等式转化为,利用单调性,解不等式.【题目详解】函数是偶函数,在单调递减,,即.故选B.【题目点拨】本题考查了偶函数利用单调性解抽象不等式,关键是利用公式转化不等式,利用的单调性解抽象不等式,考查了转化与化归的思想.12、A【解题分析】分析:先构造函数,再根据函数单调性解不等式.详解:令,因为,所以因此解集为,选A.点睛:利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造.构造辅助函数常根据导数法则进行:如构造,构造,构造,构造等二、填空题:本题共4小题,每小题5分,共20分。13、3【解题分析】

设为实数,,可得或又因为,故答案为.14、π【解题分析】

∵函数y=sinx的周期为∴函数y=3sin(2x+π故答案为π.15、【解题分析】

先由题意,求出“抽取的两张扑克牌,都是黑桃”的概率,再根据对立事件的概率计算公式,即可求出结果.【题目详解】由题意,从5张扑克牌中,任意抽取2张,所包含的基本事件的个数为:;“抽取的两张扑克牌,都是黑桃”只有一种情况;则“抽取的两张扑克牌,都是黑桃”的概率为:;因此,抽到的牌中至少有1张红心的概率是.故答案为:.【题目点拨】本题主要考查对立事件概率的相关计算,以及古典概型的概率计算,属于基础题型.16、1【解题分析】

在平面直角坐标系内,画出不等式组所表示的平面区域.平移直线,找到使直线在纵轴上的截距最大时,所经过的点坐标,把这个点的坐标代入目标函数解析式中,可以求出的值.【题目详解】在平面直角坐标系内,画出不等式组所表示的平面区域如下图所示:平移直线,∵,所以当直线经过点时,直线在纵轴上的截距最大,解方程组:,把点的坐标,代入目标函数中,,解得.故答案为:1【题目点拨】本题考查了已知目标函数的最值求参数问题,正确画出不等式组所表示的平面区域是解题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、见解析【解题分析】

引入函数,展开,其中,,是整数,,注意说明的唯一性,这样有,,然后计算即可.【题目详解】证明:因为,所以,由题意,首先证明对于固定的,满足条件的是唯一的.假设,则,而,矛盾。所以满足条件的是唯一的.下面我们求及的值:因为,显然.又因为,故,即.所以令,,则,,又,所以.【题目点拨】本题考查二项式定理的应用,解题关键是引入函数,展开,其中,,是整数,,于是可表示出.本题有一定的难度.18、(1);(2)证明见解析;(3)证明见解析.【解题分析】

(1)由题意,根据棱锥的体积,即求解该四棱锥的体积;(2)在上取中点为,连接和,证得,利用线面平行的判定定理,即可求解.(3)∵,,得到平面,进而得,利用线面垂直的判定定理,证得平面,再由面面垂直的判定定理,即可得到平面⊥平面.【题目详解】(1)四棱锥的体积.(2)证明:在上取中点为,连接和,则易得,且,且故四边形为平行四边形,故,又面,面故面.(3)证明:∵,,又,∴平面,又平面,∴,又,∴平面.∴平面.又面,∴平面⊥平面.【题目点拨】本题考查线面位置关系的判定与证明,熟练掌握空间中线面位置关系的定义、判定、几何特征是解答的关键,其中垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直.19、【解题分析】

明确复数,的实部与虚部,结合加减法的运算规则,即可求出复数,从而用表示出,接下来根据复数相等的充要条件列出关于的方程组求解,即可得出,.【题目详解】∵.∴.又∵∴∴∴∴【题目点拨】本题主要考查复数代数形式的加减运算、共轭复数的定义以及复数相等的充要条件,属于中档题.复数相等的性质是:若两复数相等则它们的实部与虚部分别对应相等.20、(1)-(2)(1,【解题分析】试题分析:(1)∵m·n=1,即3sinx4cosx4+cos2即32sinx2+12cosx∴sin(x2+π6)=∴cos(2π3-x)=cos(x-π3)=-cos(x+π3)=-[1-2sin2(=2·(12)2-1=-1(2)∵(2a-c)cosB=bcosC,由正弦定理得(2sinA-sinC)cosB=sinBcosC.∴2sinAcosB-cosBsinC=sinBcosC,∴2sinAcosB=sin(B+C),∵A+B+C=π,∴sin(B+C)=sinA,且sinA≠0,∴cosB=12,B=π3,∴0<A<∴π6<A2+π6<π212又∵f(x)=m·n=sin(x2+π6)+∴f(A)=sin(x4+π6)+故函数f(A)的取值范围是(1,32考点:本题综合考查了向量、三角函数及正余弦定理点评:三角与向量是近几年高考的热门题型,这类题往往是先进行向量运算,再进行三角变换21、(Ⅰ);(Ⅱ)详见解析.【解题分析】

(I)甲、乙两同学主选科目相同的概率,辅选科目相同的概率,再由分步计数原理的答案.(Ⅱ)每位同学辅选生物的概率为,且的所有可能取值为,,,,,.再分别计算出其概率,列表即可得出分布列,再求其期望.【题目详解】解:(I)设事件为“甲、乙两同学主选和辅选都相同.”则,即甲、乙两同学主选和辅选都相同的概率

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论