




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省长沙县三中2024届高二数学第二学期期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.一个正方形花圃,被分为5份A、B、C、D、E,种植红、黄、蓝、绿4种颜色不同的花,要求相邻两部分种植不同颜色的花,则不同的种植方法有().A.24种 B.48种 C.84种 D.96种2.已知函数是定义在上的偶函数,并且满足,当时,,则()A. B. C. D.3.函数的图象大致是()A. B.C. D.4.若复数满足,则的值是()A. B. C. D.5.的展开式中的系数为A. B. C. D.6.如图,是正四面体的面上一点,点到平面距离与到点的距离相等,则动点的轨迹是()A.直线 B.抛物线C.离心率为的椭圆 D.离心率为3的双曲线7.大学生小明与另外3名大学生一起分配到某乡镇甲、乙丙3个村小学进行支教,若每个村小学至少分配1名大学生,则小明恰好分配到甲村小学的概率为()A. B. C. D.8.设,则“”是“”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件9.已知变量,之间具有线性相关关系,其回归方程为,若,,则的值为()A. B. C. D.110.已知,则为()A.2 B.3 C.4 D.511.甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有()A.36种 B.48种 C.96种 D.192种12.已知随机变量,若,则的值为()A.0.1 B.0.3 C.0.6 D.0.4二、填空题:本题共4小题,每小题5分,共20分。13.若直线与圆相交于P.Q两点,且∠POQ=120°(其中O为原点),则的值为________.14.若复数是纯虚数,则实数的值为____.15.如图,从气球上测得正前方的河流的两岸,的俯角分别为和,如果这时气球的高是30米,则河流的宽度为______米.16.观察下列数表:如此继续下去,则此表最后一行的数为_______(用数字作答).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设命题实数满足();命题实数满足(1)若且p∧q为真,求实数的取值范围;(2)若¬q是¬p的充分不必要条件,求实数的取值范围.18.(12分)已知函数.求的单调区间;若在处取得极值,直线y=与的图象有三个不同的交点,求的取值范围.19.(12分)在平面直角坐标系中,椭圆,右焦点为.(1)若其长半轴长为,焦距为,求其标准方程.(2)证明该椭圆上一动点到点的距离的最大值是.20.(12分)如图为一简单组合体,其底面为正方形,平面,,且,为线段的中点.(Ⅰ)证明:;(Ⅱ)求三棱锥的体积.21.(12分)如图,在多面体中,平面,四边形为正方形,四边形为梯形,且,,,.(1)求直线与平面所成角的正弦值;(2)线段上是否存在点,使得直线平面?若存在,求的值:若不存在,请说明理由.22.(10分)某酱油厂对新品种酱油进行了定价,在各超市得到售价与销售量的数据如下表:单价(元)55.25.45.65.86销量(瓶)9.08.48.38.07.56.8(1)求售价与销售量的回归直线方程;(,)(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/瓶,为使工厂获得最大利润(利润=销售收入成本),该产品的单价应定为多少元?相关公式:,.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
区域A、C、D两两相邻,共有种不同的种植方法,讨论区域E与区域A种植的花的颜色相同与不同,即可得到结果.【题目详解】区域A、C、D两两相邻,共有种不同的种植方法,当区域E与区域A种植相同颜色的花时,种植B、E有种不同的种植方法,当区域E与区域A种植不同颜色的花时,种植B、E有种不同的种植方法,∴不同的种植方法有种,故选D【题目点拨】本题考查排列、组合及简单计数问题,考查分类讨论思想与分析、运算及求解能力,属于中档题.2、D【解题分析】
先由题得出函数的周期,再将变量调节到范围内进行求解.【题目详解】因为,所令,则,所以可得,即,所以函数的周期为,则,又因为函数是定义在上的偶函数,且当时,所以故选D【题目点拨】本题考查函数的基本性质,包括周期性,奇偶性,解题的关键是先求出函数的周期,属于一般题.3、A【解题分析】因为,所以舍去B,D;当时,所以舍C,选A.点睛:有关函数图象识别问题的常见题型及解题思路(1)由解析式确定函数图象的判断技巧:(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.(2)由实际情景探究函数图象.关键是将问题转化为熟悉的数学问题求解,要注意实际问题中的定义域问题.4、C【解题分析】
先用复数除法进行化简,之后求共轭复数即可.【题目详解】因为故:故其共轭复数为:故选:C.【题目点拨】本题考查复数的除法运算,涉及共轭复数,属基础题.5、D【解题分析】分析:先求出二项式展开式的通项,再令x的指数为4得到r的值,即得的展开式中的系数.详解:由题得二项展开式的通项为,令10-3r=4,所以r=2,所以的展开式中的系数为.故答案为:D.点睛:(1)本题主要考查二项式展开式中某项的系数的求法,意在考查学生对该知识的掌握水平.(2)的展开式中的系数为,不是,要把二项式系数和某一项的系数两个不同的概念区分开.6、C【解题分析】分析:由题设条件将点P到平面ABC距离与到点V的距离相等转化成在面VBC中点P到V的距离与到定直线BC的距离比是一个常数,依据圆锥曲线的第二定义判断出其轨迹的形状.详解:∵正四面体V﹣ABC∴面VBC不垂直面ABC,过P作PD⊥面ABC于D,过D作DH⊥BC于H,连接PH,可得BC⊥面DPH,所以BC⊥PH,故∠PHD为二面角V﹣BC﹣A的平面角令其为θ则Rt△PGH中,|PD|:|PH|=sinθ(θ为V﹣BC﹣A的二面角的大小).又点P到平面ABC距离与到点V的距离相等,即|PV|=|PD|∴|PV|:|PH|=sinθ<1,即在平面VBC中,点P到定点V的距离与定直线BC的距离之比是一个常数sinθ,又在正四面体V﹣ABC,V﹣BC﹣A的二面角的大小θ有:sinθ=<1,由椭圆定义知P点轨迹为椭圆在面SBC内的一部分.故答案为:C.点睛:(1)本题主要考查二面角、椭圆的定义、轨迹方程等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.(2)解答本题的关键是联想到圆锥曲线的第二定义.7、C【解题分析】
基本事件总数n36,小明恰好分配到甲村小学包含的基本事件个数m12,由此能求出小明恰好分配到甲村小学的概率.【题目详解】解:大学生小明与另外3名大学生一起分配到某乡镇甲、乙、丙3个村小学进行支教,每个村小学至少分配1名大学生,基本事件总数n36,小明恰好分配到甲村小学包含的基本事件个数m12,∴小明恰好分配到甲村小学的概率为p.故选C.【题目点拨】本题考查概率的求法,考查古典概率、排列组合等基础知识,考查运算求解能力,是基础题.8、A【解题分析】分析:首先求解绝对值不等式,然后求解三次不等式即可确定两者之间的关系.详解:绝对值不等式,由.据此可知是的充分而不必要条件.本题选择A选项.点睛:本题主要考查绝对值不等式的解法,充分不必要条件的判断等知识,意在考查学生的转化能力和计算求解能力.9、A【解题分析】
根据题意,可知,,,代入即可求这组样本数据的回归直线方程,即可求解出答案。【题目详解】依题意知,,而直线一定经过点,所以,解得.故答案选A。【题目点拨】本题主要考查了根据线性回归方程的性质求回归直线,线性回归直线过点,这个点称为样本点的中心,回归直线一定过此点。10、A【解题分析】
根据自变量范围代入对应解析式,解得结果.【题目详解】故选:A【题目点拨】本题考查分段函数求值,考查基本分析求解能力,属基础题.11、C【解题分析】试题分析:设4门课程分别为1,2,3,4,甲选修2门,可有1,2;1,3;1,4;2,3;2,4;3,4共6种情况,同理乙,丙均可有1,2,3;1,2,4;2,3,4;1,3,4共4种情况,∴不同的选修方案共有6×4×4=96种,故选C.考点:分步计数原理点评:本题需注意方案不分次序,即a,b和b,a是同一种方案,用列举法找到相应的组合即可.12、D【解题分析】
根据题意随机变量可知其正态分布曲线的对称轴,再根据正态分布曲线的对称性求解,即可得出答案.【题目详解】根据正态分布可知,故.故答案选D.【题目点拨】本题主要考查了根据正态分布曲线的性质求指定区间的概率.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
作出图形,由图可知,点P的坐标为,由此可得的值.【题目详解】作出图形,由图可知,点P的坐标为,所以直线的倾斜角或,所以.【题目点拨】本题主要考查了直线与圆的位置关系的应用,其中解答中正确作出图形,结合图形求解是解答的关键,着重考查了数形结合思想,以及推理与运算能力,属于基础题.14、-【解题分析】
由纯虚数的定义,可以得到一个关于的等式和不等式,最后求出的值.【题目详解】因为复数是纯虚数,所以有,.故答案为.【题目点拨】本题考查了纯虚数的定义,解不等式和方程是解题的关键.15、【解题分析】
由题意画出图形,利用特殊角的三角函数,可得答案.【题目详解】解:由题意可知,,,,.故答案为.【题目点拨】本题给出实际应用问题,着重考查了三角函数的定义,属于简单题.16、2816【解题分析】
观察数表可知,每一行的首尾两项数字的和成等比数列,由于最后一行的数字等于倒数第二行两项的和,所以只要根据规律求出第9行的首尾两项之和即可.【题目详解】由题意可知最后一行为第10行,第一行首尾两项的和为11,第二行首尾两项的和为22,第三行首尾两项的和为44,,则第9行首尾两项的和为,所以第十行的数字是,故答案是:.【题目点拨】该题考查的是有关归纳推理的问题,涉及到的知识点有根据题中所给的条件,归纳出对应的结论,属于简单题目.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】试题分析:(1)若a=1,分别求出p,q成立的等价条件,利用且p∧q为真,求实数x的取值范围;(2)利用¬p是¬q的充分不必要条件,即q是p的充分不必要条件,求实数a的取值范围.试题解析:(1)由得,又,所以,当时,,即为真时实数的取值范围为.为真时实数的取值范围是,若为真,则真真,所以实数的取值范围是.(2)是的充分不必要条件,即,等价于,设,,则是的真子集;则,且所以实数的取值范围是.18、【解题分析】
解:(Ⅰ),
①当a<0时,f′(x)>0,f(x)在R上单调递增;
②当a>0时,由f′(x)>0即,解得或,
由f′(x)<0得,
∴f(x)的单调增区间为和(,+∞);f(x)的单调减区间是.
(Ⅱ)因为f(x)在x=−1处取得极大值,
所以,∴a=1.
所以,
由f′(x)=0解得.
由(1)中f(x)的单调性可知,f(x)在x=−1处取得极大值f(−1)=1,
在x=1处取得极小值f(1)=−2.
因为直线y=m与函数y=f(x)的图象有三个不同的交点,
结合f(x)的单调性可知,m的取值范围是(−2,1);19、(1);(2)见解析.【解题分析】
(1)由题设条件可得出、的值,进而可求出的值,由此得出椭圆的标准方程;(2)设点,将该点代入椭圆的方程得出,并代入的表达式,转化为关于的函数,利用函数的性质求出的最大值.【题目详解】(1)由题意,,,则,.椭圆的标准方程为;(2)设,,,当时,.【题目点拨】本题考查椭圆方程的求解及椭圆方程的应用,在处理与椭圆上一点有关的最值问题时,充分利用点在椭圆上这一条件,将问题转化为二次函数来求解,考查函数思想的应用,属于中等题.20、(1)见解析(2)【解题分析】试题分析:(Ⅰ)要证线线垂直,一般先证线面垂直,注意到底面,考虑证明与平面平行(或其内一条直线平行),由于是中点,因此取中点(实质上是与的交点),可证是平行四边形,结论得证;(Ⅱ)求三棱锥的体积,采用换底,即,由已知可证就是三棱锥的高,从而易得体积.试题解析:(Ⅰ)连结与交于点,则为的中点,连结,∵为线段的中点,∴且又且∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 厂房铁板出售合同范本
- 公借合同范本
- 医院日常消毒合同范本
- 劳务合同范本和费率
- 河南2025年01月河南省鹤壁市鹤山区姬家山园区发展中心2025年公开招考10名化工人才笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 办公耗材销售合同范本
- 政府采购合同范本 电缆
- 大田翻耕合同范本
- 保健培训课件图片
- 北师大版数学七下同步课时课件3.3用图象表示的变量间关系 第二课时
- 护-学-岗-签-到-簿
- 运维服务体系建立实施方案(5篇)
- 路面基层(级配碎石)施工方案
- 2025年日历(日程安排-可直接打印)
- 四川政采评审专家入库考试基础题复习试题及答案(一)
- 患者手术风险评估与术前准备制度
- 口腔执业医师定期考核试题(资料)带答案
- 2024年三八妇女节妇女权益保障法律知识竞赛题库及答案(共260题)
- 2023年7月浙江省普通高中学业水平考试(学考)语文试题答案
- 2024年计算机软件水平考试-初级信息处理技术员考试近5年真题集锦(频考类试题)带答案
- 发热病人护理课件
评论
0/150
提交评论