版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省联考联盟2024届数学高二下期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.△ABC的内角A、B、C的对边分别为a、b、c.已知,,,则b=A. B. C.2 D.32.若执行如图所示的程序框图,则输出S的值为()A. B. C. D.3.若复数满足为虚数单位),则()A. B. C. D.4.设函数的极小值为,则下列判断正确的是A. B.C. D.5.若函数f(x)=x2lnx与函数A.(-∞,1e2-1e6.某大学安排5名学生去3个公司参加社会实践活动,每个公司至少1名同学,安排方法共有()种A.60 B.90 C.120 D.1507.已知函数与的图象上存在关于对称的点,则实数的取值范围是()A. B. C. D.8.“a>1”是“函数f(x)=ax-sinx是增函数”的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.函数在单调递增,且为奇函数,若,则满足的的取值范围是().A. B. C. D.10.已知随机变量ξ的分布列为P(ξ=k)=,k=1,2,3,则D(3ξ+5)=()A.6 B.9C.3 D.411.从1,2,3,4,5中任取2个不同的数,事件“取到的2个数之和为偶数”,事件“取到的2个数均为偶数”,则()A. B. C. D.12.抛掷一枚质地均匀的骰子两次,记事件A={两次的点数均为奇数},B={两次的点数之和小于7},则PBA.13 B.49 C.5二、填空题:本题共4小题,每小题5分,共20分。13.李华经营了甲、乙两家电动轿车销售连锁店,其月利润(单位:元)分别为,(其中x为销售辆数),若某月两连锁店共销售了110辆,则能获得的最大利润为______元.14.如图所示,为了测量,处岛屿的距离,小明在处观测,,分别在处的北偏西、北偏东方向,再往正东方向行驶40海里至处,观测在处的正北方向,在处的北偏西方向,则,两处岛屿间的距离为__________海里.15.若对一切实数,不等式恒成立,则实数的取值范围为______.16.i是虚数单位,则复数的虚部为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数f(x)=lnx+bx-c,f(x)在点(1,f(1))处的切线方程为(1)求f(x)的解析式;(2)求f(x)的单调区间;(3)若函数f(x)在定义域内恒有f(x)≥2lnx+kx成立,求18.(12分)如图,在直三棱柱中,,,,.(1)求三棱柱的体积;(2)若点M是棱AC的中点,求直线与平面ABC所成的角的大小.19.(12分)设函数,曲线在点处的切线方程为.(1)求,的值;(2)若,求函数的单调区间;(3)设函数,且在区间内存在单调递减区间,求实数的取值范围.20.(12分)已知数列,其前项和为;(1)计算;(2)猜想的表达式,并用数学归纳法进行证明.21.(12分)已知函数f(x)=|x+a|+|x-2|的定义域为实数集R.(1)当a=5时,解关于x的不等式f(x)>9;(2)设关于x的不等式f(x)≤|x-4|的解集为A,若B={x∈R||2x-1|≤3},当A∪B=A时,求实数a的取值范围.22.(10分)[选修4-5:不等式选讲]已知函数=|x-a|+(a≠0)(1)若不等式-≤1恒成立,求实数m的最大值;(2)当a<时,函数g(x)=+|2x-1|有零点,求实数a的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
由余弦定理得,解得(舍去),故选D.【考点】余弦定理【名师点睛】本题属于基础题,考查内容单一,根据余弦定理整理出关于b的一元二次方程,再通过解方程求b.运算失误是基础题失分的主要原因,请考生切记!2、C【解题分析】
首先确定流程图的功能为计数的值,然后利用裂项求和的方法即可求得最终结果.【题目详解】由题意结合流程图可知流程图输出结果为,,.本题选择C选项.【题目点拨】识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.3、A【解题分析】
根据复数的除法运算可求得;根据共轭复数的定义可得到结果.【题目详解】由题意得:本题正确选项:【题目点拨】本题考查共轭复数的求解,关键是能够利用复数的除法运算求得,属于基础题.4、D【解题分析】
对函数求导,利用求得极值点,再检验是否为极小值点,从而求得极小值的范围.【题目详解】令,得,检验:当时,,当时,,所以的极小值点为,所以的极小值为,又.∵,∴,∴.选D.【题目点拨】本题考查利用导数判断单调性和极值的关系,属于中档题.5、B【解题分析】
通过参数分离得到a=lnx2x-x2lnx【题目详解】若函数f(x)=x2lnx2ln设t=t=lnxx⇒t'=1-lnx画出图像:a=t2-
a=t2-t1t2=故答案为B【题目点拨】本题考查了函数的零点问题,参数分离换元法是解题的关键.6、D【解题分析】分析:由题意结合排列组合公式整理计算即可求得最终结果.详解:由题意可知,5人的安排方案为或,结合平均分组计算公式可知,方案为时的方法有种,方案为时的方法有种,结合加法公式可知安排方法共有种.本题选择D选项.点睛:(1)解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组,注意各种分组类型中,不同分组方法的求法.7、D【解题分析】
由题意可知有解,即在有解,求导数,确定函数的单调性,可知m的范围.【题目详解】∵函数与的图象上存在关于对称的点,∴有解,∴,∴在有解,,∴函数在上单调递增,在上单调递增,∴,故选D.【题目点拨】本题考查利用导数求最值,考查对称性的运用,关键是转化为在有解,属于中档题.8、A【解题分析】
先由函数fx=ax-sinx为增函数,转化为f'【题目详解】当函数fx=ax-sinx为增函数,则则a≥cos因此,“a>1”是“函数fx=ax-sin【题目点拨】本题考查充分必要条件的判断,涉及参数的取值范围,一般要由两取值范围的包含关系来判断,具体如下:(1)A⊊B,则“x∈A”是“x∈B”的充分不必要条件;(2)A⊋B,则“x∈A”是“x∈B”的必要不充分条件;(3)A=B,则“x∈A”是“x∈B”的充要条件;(4)A⊄B,则则“x∈A”是“x∈B”的既不充分也不必要条件。9、D【解题分析】
是奇函数,故;又是增函数,,即则有,解得,故选D.【题目点拨】解本题的关键是利用转化化归思想,结合奇函数的性质将问题转化为,再利用单调性继续转化为,从而求得正解.10、A【解题分析】
直接利用方差的性质求解即可.【题目详解】由题意得,,,故选A.【题目点拨】本题主要考查方差的性质与应用,意在考查对基本性质掌握的熟练程度,属于中档题.11、B【解题分析】两个数之和为偶数,则这两个数可能都是偶数或都是奇数,所以。而,所以,故选B12、D【解题分析】由题意得P(B|A)=P(AB)P(A),两次的点数均为奇数且和小于7的情况有(1,1),(1,3),(3,1),(1,5),(5,1)(3,3),则P(AB)=6二、填空题:本题共4小题,每小题5分,共20分。13、33000【解题分析】
设其中一家连锁店销售辆,则另一家销售辆,再列出总利润的表达式,是一个关于的二次函数,再利用二次函数的性质求出它的最大值即可.【题目详解】依题意,可设甲这一家销售了辆电动车,则乙这家销售了辆电动车,总总利润,所以,当时,取得最大值,且,故答案为.【题目点拨】本题考查函数模型的选择与应用,考查二次函数最值等基础知识,解题的关键在于确定函数的解析式,考查学生的应用能力,属于中等题.14、【解题分析】分析:根据已知条件,分别在和中计算,在用余弦定理计算.详解:连接,由题可知,,,,,,则在中,由正弦定理得为等腰直角三角形,则在中,由余弦定理得故答案为.点睛:解三角形的应用问题,先将实际问题抽象成三角形问题,再合理选择三角形以及正、余弦定理进行计算.15、【解题分析】
当时,不等式显然成立;当时,不等式恒成立等价于恒成立,运用基本不等式可得的最小值,从而可得的范围.【题目详解】当时,不等式显然成立;当时,不等式恒等价于恒成立,由,当且仅当时,上式取得等号,即有最小值,所以,故答案为【题目点拨】本题考查不等式恒成立问题、分类讨论思想和分离参数的应用以及基本不等式求最值,属于中档题.不等式恒成立问题常见方法:①分离参数恒成立(即可)或恒成立(即可);②数形结合(图象在上方即可);③讨论最值或恒成立;④讨论参数.16、-1【解题分析】
分子分母同时乘以,进行分母实数化.【题目详解】,其虚部为-1【题目点拨】分母实数化是分子分母同时乘以分母的共轭复数,是一道基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)f(x)=lnx-2x-3;(2)f(x)的单调增区间为(0,1(3)(-∞,-2-e【解题分析】【试题分析】(1)借助导数的几何意义建立方程组求解;(2)先求导再借助导数与函数单调性之间的关系求解;(3)先将不等式进行等价转化,再分离参数借助导数知识求其最值,即可得到参数的范围。(1)由题意,得f'(x)=1则f'(1)=1+b,∵在点(1,f(1))处的切线方程为x+y+4=0,∴切线斜率为-1,则1+b=-1,得b=-2,将(1,f(1))代入方程x+y+4=0,得1+f(1)+4=0,解得f(1)=-5,∴f(1)=b-c=-5,将b=-2代入得c=3,故f(x)=ln(2)依题意知函数的定义域是(0,+∞),且f'(x)=1令f'(x)>0,得0<x<12,令f'(x)<0,得故f(x)的单调增区间为(0,12)(3)由f(x)≥2lnx+kx,得∴k≤-2-lnx+3x设g(x)=-2-lnx+3x令g'(x)=0,得x=e令g'(x)>0,得x>e-2,令g'(x)<0,得故g(x)在定义域内有极小值g(e∴g(x)的最小值为g(e所以k≤-2-e2,即k的取值范围为点睛:导数是研究函数的单调性、极值(最值)等方面的重要工具,本题的设置旨在考查导数在研究函数的单调性与极值(最值)中的运用。求解第一问时,直接借助题设与导数的几何意义建立方程求解;求解第二问时,依据题设条件,先求导法则及导数与函数的单调性之间的关系建立不等式探求;解答第三问时,先将不等式进行转化,再构造函数,运用导数的知识进行分析探求,从而使得问题简捷、巧妙获解。18、(1)(2)【解题分析】
(1)由直三棱柱ABC﹣A1B1C1中,∠ABC=60°,BB1=3,AB=1,BC=1.能求出三棱柱ABC﹣A1B1C1的体积.(2)点M是棱AC的中点,B1M在平面ABC的射影为直线MB,则∠B1MB就是直线B1M与平面ABC所成的角的大小,由此能求出直线B1M与平面ABC所成的角的大小.【题目详解】(1)∵在直三棱柱ABC﹣A1B1C1中,∠ABC=60°,BB1=3,AB=1,BC=1.∴三棱柱ABC﹣A1B1C1的体积:V12.(2)点M是棱AC的中点,B1M在平面ABC的射影为直线MB,则∠B1MB就是直线B1M与平面ABC所成的角的大小,tan∠B1MB,∴∠B1MB=arctan.∴直线B1M与平面ABC所成的角的大小为arctan.【题目点拨】本题考查三棱锥的体积的求法,考查线面角的大小的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.19、(1);(2)单调递增区间为,,单调递减区间为;(3).【解题分析】试题分析:(1)由切点坐标及切点处的导数值为,即可列出方程组,求解,的值;(2)在的条件下,求解和,即可得到函数的单调区间;(3)在区间内存在单调递减区间,即在区间内有解,由此求解的取值范围.试题解析:(1),由题意得,即.(2)由(1)得,(),当时,,当时,,当时,.所以函数的单调递增区间为,,单调递减区间为.(3),依题意,存在,使不等式成立,即时,,当且仅当“”,即时等号成立,所以满足要求的的取值范围是.考点:利用导数研究函数的单调性及函数的有解问题.【方法点晴】本题主要考查了利用导数研究曲线在某点处的切线方程、利用导数研究函数的单调性、求解单调区间和函数的有解问题的求解,着重考查了学生分析问题和解答问题的能力、转化与化归思想的应用,试题有一定难度和也是高考的常考题,属于中档试题,其中第三问的解答是本题的难点,平时注意总计和积累.20、(1);(2),证明见解析【解题分析】
(1)根据已知条件,计算出的值;(2)由(1)猜想,根据数学归纳法证明方法,对猜想进行证明.【题目详解】(1)计算,,,(2)猜想.证明:①当时,左边,右边,猜想成立.②假设猜想成立.即成立,那么当时,,而,故当时,猜想也成立.由①②可知,对于,猜想都成立.【题目点拨】本小题主要考查合情推理,考查利用数学归纳法证明和数列有关问题,属于中档题.21、(1){x∈R|x<-6或x>3}.(2)[-1,0].【解题分析】分析:(1)当a=5时,把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求;(2)由题意可得B⊆A,区间B的端点在集合A中,由此求得a的取值范围.详解:(1)当a=5时,f(x)=|x+5|+|x-2|.①当x≥2时,由f(x)>9,得2x+3>9,解得x>3;②当-5≤x<2时,由f(x)>9,得7>9,此时不等式无解;③当x<-5时,由f(x)>9,得-2x-3>9,解得x<-6.综上所述,当a=5时,关于x的不等式f(x)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教学合作协议书
- 2024年度二手房买卖协议模板3篇
- 2024年度医疗信息化系统设计与实施合同
- 2024版个人房屋买卖合同中的违约责任规定
- 二中校本课程评价制度模版(3篇)
- 购销合同范本范本版
- 2024年度城市轨道交通建设特许经营权转让合同2篇
- 租赁安全生产管理协议
- 维修协议合同范本
- 2024年度知识产权许可合同标的详细规定3篇
- 铸牢中华民族共同体意识-形考任务1-国开(NMG)-参考资料
- 人教版七年级数学上册期中测试压轴题考点训练(1-3章)(原卷版+解析)
- 村卫生室健康扶贫督导考核表
- 鼓乐铿锵导学案
- GB 10767-2021 食品安全国家标准 幼儿配方食品(高清版)
- 食品小作坊食品原料进货台账【精选文档】
- 初中人音版音乐七年级下册.第四单元红河谷.(13张)ppt课件
- (完整版)周转材料验收标准
- 110~750kV架空输电线路设计规范
- word带圈数字序号1-99可复制
- 民事申诉书格式和
评论
0/150
提交评论