




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省邵东县三中2024届数学高二第二学期期末经典试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若函数在区间上单调递增,则实数的取值范围是()A. B. C. D.2.如图所示,一个几何体的正视图和侧视图都是边长为2的正方形,俯视图是一个直径为2的圆,则这个几何体的全面积是A. B. C. D.3.设复数满足,则()A. B. C. D.4.《九章算术》中,将底面是直角三角形的直三梭柱称之为“堑堵”.已知某“堑堵”的三视图如图所示,则该“堑堵”的表面积为()A. B. C. D.5.已知,,,若,则()A.-5 B.5 C.1 D.-16.如图,设、两点在河的两岸,一测量者在的同侧河岸边选定一点,测出、的距离是,,,则、两点间的距离为()A. B. C. D.7.针对时下的“抖音热”,某校团委对“学生性别和喜欢抖音是否有关”作了一次调查,其中被调查的女生人数是男生人数的12,男生喜欢抖音的人数占男生人数的16,女生喜欢抖音的人数占女生人数23,若有99%参考公式:KP0.100.050.0250.0100.0050.001k2.7063.8415.0246.6357.87910.828A.12人 B.18人 C.24人 D.30人8.因为对数函数是增函数,而是对数函数,所以是增函数,上面的推理错误的是A.大前提 B.小前提 C.推理形式 D.以上都是9.已知函数的值域是,则实数的取值范围是()A. B. C. D.10.设直线的一个方向向量,平面的一个法向量,则直线与平面的位置关系是().A.垂直 B.平行C.直线在平面内 D.直线在平面内或平行11.如果函数f(x)在区间[a,b]上存在x1,x2(a<x1<x2<b),满足f'(x1A.(13,12)B.(32,3)C.(112.已知随机变量的概率分布如下表,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.甲、乙、丙、丁四名同学和一名老师站成一排合影留念.要求老师必须站在正中间,甲同学不与老师相邻,则不同站法种数为.14.已知曲线在处的切线与直线垂直,则实数的值为______.15.设向量,且,则实数的值是_______;16.在回归分析中,分析残差能够帮助我们解决的问题是:_____________________.(写出一条即可)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,为常数(Ⅰ)若时,已知在定义域内有且只有一个极值点,求的取值范围;(Ⅱ)若,已知,恒成立,求的取值范围。18.(12分)如图,在四棱锥中,底面为菱形,,,且.(1)求证:平面平面;(2)若,求二面角的余弦值.19.(12分)设,.(Ⅰ)如果存在x1,x2∈[0,2],使得g(x1)-g(x2)≥M成立,求满足上述条件的最大整数M;(Ⅱ)如果对于任意的都有f(s)≥g(t)成立,求实数a的取值范围.20.(12分)在平面直角坐标系中,曲线C:,直线:,直线:以坐标原点为极点,x轴正半轴为极轴建立极坐标系.(1)写出曲线C的参数方程以及直线,的极坐标方程;(2)若直线与曲线C分别交于O、A两点,直线与曲线C交于O、B两点,求△AOB的面积.21.(12分)已知在等比数列中,.(1)求数列的通项公式;(2)设,求数列的前项和.22.(10分)随着社会的进步与发展,中国的网民数量急剧增加.下表是中国从年网民人数及互联网普及率、手机网民人数(单位:亿)及手机网民普及率的相关数据.年份网民人数互联网普及率手机网民人数手机网民普及率2009201020112012201320142015201620172018(互联网普及率(网民人数/人口总数)×100%;手机网民普及率(手机网民人数/人口总数)×100%)(Ⅰ)从这十年中随机选取一年,求该年手机网民人数占网民总人数比值超过80%的概率;(Ⅱ)分别从网民人数超过6亿的年份中任选两年,记为手机网民普及率超过50%的年数,求的分布列及数学期望;(Ⅲ)若记年中国网民人数的方差为,手机网民人数的方差为,试判断与的大小关系.(只需写出结论)
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
试题分析:,∵函数在区间单调递增,∴在区间上恒成立.∴,而在区间上单调递减,∴.∴的取值范围是.故选D.考点:利用导数研究函数的单调性.2、C【解题分析】
由三视图还原可知原图形是圆柱,再由全面积公式求得全面积。【题目详解】由三视图还原可知原图形是圆柱,圆柱底面半径为1,高为2,所以,选C.【题目点拨】本题考查三视图还原及圆柱的全面积公式,需要熟练运用公式,难度较低。3、C【解题分析】由,得,则,故选C.4、D【解题分析】分析:先还原几何体,再根据棱柱各面形状求面积.详解:因为几何体为一个以俯视图为底面的三棱柱,底面直角三角形的两直角边长为2和,所以棱柱表面积为,选D.点睛:空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.(3)旋转体的表面积问题注意其侧面展开图的应用.5、A【解题分析】
通过平行可得m得值,再通过数量积运算可得结果.【题目详解】由于,故,解得,于是,,所以.故选A.【题目点拨】本题主要考查共线与数量积的坐标运算,考查计算能力.6、A【解题分析】
利用三角形的内角和定理求出,再利用正弦定理即可求解.【题目详解】由三角形的内角和可得,在中,由正弦定理可得,所以,故选:A【题目点拨】本题考查了正弦定理在生活中的应用,需熟记正弦定理,属于基础题.7、B【解题分析】
设男生人数为x,女生人数为x2,完善列联表,计算K2【题目详解】设男生人数为x,女生人数为x喜欢抖音不喜欢抖音总计男生1656x女生1316x总计xx32K男女人数为整数故答案选B【题目点拨】本题考查了独立性检验,意在考查学生的计算能力和应用能力.8、A【解题分析】
由于三段论的大前提“对数函数是增函数”是错误的,所以选A.【题目详解】由于三段论的大前提“对数函数是增函数”是错误的,只有当a>1时,对数函数才是增函数,故答案为:A【题目点拨】(1)本题主要考查三段论,意在考查学生对该知识的掌握水平和分析推理能力.(2)一个三段论,只有大前提正确,小前提正确和推理形式正确,结论才是正确的.9、C【解题分析】
函数在时取得最大值,在或时得,结合二次函数图象性质可得的取值范围.【题目详解】二次函数的图象是开口向下的抛物线.最大值为,且在时取得,而当或时,.结合函数图象可知的取值范围是.故选:C.【题目点拨】本题考查二次函数的图像和性质,考查数形结合思想的应用,属于中档题.10、D【解题分析】∵直线的一个方向向量,平面的一个法向量∴∴直线在平面内或平行故选D.11、C【解题分析】试题分析:f'(x)=3x2-2x,f(a)-f(0)a-0=a2-a,所以函数f(x)=x3-x2+a是区间[0,a]上的“双中值函数”等价于f'考点:1.新定义问题;2.函数与方程;3.导数的运算法则.【名师点睛】本题考查新定义问题、函数与方程、导数的运算法则以及学生接受鷴知识的能力与运用新知识的能力,难题.新定义问题是命题的新视角,在解题时首先是把新定义问题中的新的、不了解的知识通过转翻译成了解的、熟悉的知识,然后再去求解、运算.12、C【解题分析】由分布列的性质可得:,故选C.二、填空题:本题共4小题,每小题5分,共20分。13、.【解题分析】试题分析:老师必须站在正中间,则老师的位置是指定的;甲同学不与老师相邻,则甲同学站两端,故不同站法种数为:,故填:.考点:排列组合综合应用.14、【解题分析】
由题意可得直线的斜率为,再由垂直可得曲线在处的切线斜率为,对曲线求导令导函数为可得的值.【题目详解】解:直线的斜率为,可得曲线在处的切线为,,当,,可得,可得,故答案:.【题目点拨】本题考查了直线与直线的垂直关系及导函数的几何意义的应用、导数的计算,属于中档题.15、2【解题分析】
由条件利用两个向量共线的性质求得x的值.【题目详解】解:∵,,且,∴2x=,即x=2故答案为2【题目点拨】本题主要考查两个向量共线的性质,两个向量坐标形式的运算,属于基础题.16、寻找异常点,考查相应的样本数据是否有错【解题分析】
分析残差是回归诊断的一部分,可以帮助我们发现样本数据中的错误,分析模型选择是否合适.【题目详解】分析残差能够帮助我们解决的问题是:寻找异常点,考查相应的样本数据是否有错;故答案为:寻找异常点,考查相应的样本数据是否有错.【题目点拨】本题考查线性回归方程中残差的作用,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】分析:⑴将代入,求出的表达式,求导,然后综合只有一个极值点即可求出结果⑵法一:将代入,求导后利用单调性来求解;法二:整体思想,采用放缩法进行求解详解:(Ⅰ)当时,,,因为在定义域内有且只有一个极值点,所以在内有且仅有一根,则有图知,所以(Ⅱ),法1:因,,恒成立,则内,先必须递增,即先必须,即先必须,因其对称轴,有图知(此时在),所以法2:因,所以,所以,令,因,,所以递增,,所以,点睛:本题考查了含有参量的导数极值问题和恒成立问题,在解答此类题目时将参数代入,然后根据题意进行转化,结合导数的单调性进行证明,本题有一定难度。18、(1)见解析;(2).【解题分析】
(1)先根据计算得线线线线垂直,再根据线面垂直判定定理以及面面垂直判定定理得结论,(2)建立空间直角坐标系,利用空间向量求二面角.【题目详解】(1)证明:取中点,连结,,,因为底面为菱形,,所以.因为为的中点,所以.在△中,,为的中点,所以.设,则,,因为,所以.在△中,,为的中点,所以.在△和△中,因为,,,所以△△.所以.所以.因为,平面,平面,所以平面.因为平面,所以平面平面.(2)因为,,,平面,平面,所以平面.所以.由(1)得,,所以,,所在的直线两两互相垂直.以为坐标原点,分别以所在直线为轴,轴,轴建立如图所示的空间直角坐标系.设,则,,,,所以,,,设平面的法向量为,则令,则,,所以.设平面的法向量为,则令,则,,所以.设二面角为,由于为锐角,所以.所以二面角的余弦值为.【题目点拨】本题考查线面垂直判定定理、面面垂直判定定理以及利用空间向量求二面角,考查基本分析论证与求解能力,属中档题.19、(Ⅰ)M=4;(Ⅱ)[1,+∞).【解题分析】分析:(I)存在x1、x2∈[0,2],使得g(x1)﹣g(x2)≥M成立等价于g(x)max﹣g(x)min≥M;(II)对于任意的s、t∈[,2],都有f(s)≥g(t)成立等价于f(x)≥g(x)max,进一步利用分离参数法,即可求得实数a的取值范围;详解:(I)存在x1、x2∈[0,2],使得g(x1)﹣g(x2)≥M成立等价于g(x)max﹣g(x)min≥M∵g(x)=x3﹣x2﹣3,∴∴g(x)在(0,)上单调递减,在(,2)上单调递增∴g(x)min=g()=﹣,g(x)max=g(2)=1∴g(x)max﹣g(x)min=∴满足的最大整数M为4;(II)对于任意的s、t∈[,2],都有f(s)≥g(t)成立等价于f(x)≥g(x)max.由(I)知,在[,2]上,g(x)max=g(2)=1∴在[,2]上,f(x)=+xlnx≥1恒成立,等价于a≥x﹣x2lnx恒成立记h(x)=x﹣x2lnx,则h′(x)=1﹣2xlnx﹣x且h′(1)=0∴当时,h′(x)>0;当1<x<2时,h′(x)<0∴函数h(x)在(,1)上单调递增,在(1,2)上单调递减,∴h(x)max=h(1)=1∴a≥1点睛:导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立,转化为;(3)若恒成立,可转化为.20、(1):,:.(2)【解题分析】分析:(1)直接根据圆的参数方程求出曲线C的参数方程,利用极坐标公式求出直线,的极坐标方程.(2)先求出OA,OB,再利用三角形面积公式求的面积.详解:(1)依题意,曲线:,故曲线的参数方程是(为参数),因为直线:,直线:,故,的极坐标方程为:,:.(2)易知曲线的极坐标方程为,把代入,得,所以.把代入,得,所以.所以.点睛:(1)本题主要考查直角坐标方程、参数方程和极坐标的互化,考查极坐标的应用,意在考查学生对这些知识的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度博物馆陈列室装修设计与施工合同
- 2025年面包粉线行业深度研究分析报告
- Unit 6 Enjoy Cycling Topic 3 Bicycle riding is good exercise Section C 教学设计-2024-2025学年仁爱科普版英语八年级下册
- Starter Unit 3 Welcome Section A 1a-2d 教学设计 2024-2025学年人教版(2024)七年级英语上册
- 压力容器非标项目可行性研究报告
- 2025年社交电商项目建议书
- 保险分期合同范本
- 垃圾项目可行性报告
- 2025年双绿肥项目可行性研究报告
- 2025年度智能公寓租赁管理服务合同
- 美团外卖骑手服务合同(2025年度)
- 应急预案解读与实施
- 2025年春季学期团委工作安排表
- 2025年《国有企业领导人员腐败案例剖析》心得体会样本(3篇)
- 广告行业安全培训详细介绍
- 2024-2029年全球及中国氨能源(绿氨)应用可行性研究与投资战略规划分析报告
- 2025福南平市建武夷水务发展限公司招聘21人高频重点提升(共500题)附带答案详解
- 2025年上半年工业和信息化部装备工业发展中心应届毕业生招聘(第二批)易考易错模拟试题(共500题)试卷后附参考答案
- 《快递运营》课件-项目三 收件
- 川教版三年级下册《生命生态安全》教学设计含教学计划【附安全知识】
- 国家中医药管理局发布的406种中医优势病种诊疗方案和临床路径目录
评论
0/150
提交评论