版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽省潜山市第二中学数学高二下期末学业质量监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,则中()A.至少有一个不小于1 B.至少有一个不大于1C.都不大于1 D.都不小于12.若,则的大小关系为A. B. C. D.3.某三棱锥的三视图如图所示,则该三棱锥的体积是()A. B. C. D.4.若函数的导函数的图像关于轴对称,则的解析式可能为A. B. C. D.5.直线与抛物线交于,两点,若,则弦的中点到直线的距离等于()A. B. C.4 D.26.现有5人参加抽奖活动,每人依次从装有5张奖票(其中3张为中奖票)的箱子中不放回地随机抽取一张,直到3张中奖票都被抽出时活动结束,则活动恰好在第4人抽完后结束的概率为()A. B. C. D.7.已知集合,,若,则实数的取值范围是()A. B. C. D.8.已知函数的图象关于直线对称,且在上为单调函数,下述四个结论:①满足条件的取值有个②为函数的一个对称中心③在上单调递增④在上有一个极大值点和一个极小值点其中所有正确结论的编号是()A.①④ B.②③ C.①②④ D.①②③9.()A.1 B. C. D.10.已知函数,则曲线在处的切线的倾斜角为()A. B. C. D.11.一个几何体的三视图如图所示,则该几何体的体积为()A. B.8 C.6 D.12.已知函数的导函数为,满足,且,则不等式的解集为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知复数,其中是虚数单位,复数满足,则复数的模等于__________.14.已知抛物线的准线与圆相切,则的值为__________.15.某工厂在试验阶段大量生产一种零件,这种零件有、两项技术指标需要检测,设各项技术指标达标与否互不影响,若有且仅有一项技术指标达标的概率为,至少一项技术指标达标的概率为.按质量检验规定:两项技术指标都达标的零件为合格品,任意依次抽取该种零件4个,设表示其中合格品的个数,则______.16.若直线l:与x轴相交于点A,与y轴相交于B,被圆截得的弦长为4,则为坐标原点的最小值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等比数列an的前n项和Sn,满足S4(1)求数列an(2)设数列{bn}满足a1b1-a218.(12分)已知知x为正实数,n为正偶数,在的展开式中,(1)若前3项的系数依次成等差数列,求n的值及展开式中的有理项;(2)求奇数项的二项式系数的和与偶数项的二项式系数的和,并比较它们的大小.19.(12分)总书记在十九大报告中指出,必须树立和践行“绿水青山就是金山银山”的生态文明发展理念,某城市选用某种植物进行绿化,设其中一株幼苗从观察之日起,第x天的高度为ycm,测得一些数据图如下表所示:第x度y/cm0479111213作出这组数的散点图如下(1)请根据散点图判断,与中哪一个更适宜作为幼苗高度y关于时间x的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程,并预测第144天这株幼苗的高度(结果保留1位小数).附:,参考数据:140285628320.(12分)如图,在四棱锥中,底面是直角梯形,且,.(1)证明:平面;(2)求平面与平面所成锐二面角的余弦值.21.(12分)已知函数.(I)当时,求曲线在点处的切线方程;(Ⅱ)若在区间上单调递增,求的取值范围;(Ⅲ)求在上的最小值.22.(10分)已知函数.(Ⅰ)当时,求在上的零点个数;(Ⅱ)当时,若有两个零点,求证:
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
用反证法证明,假设同时大于,推出矛盾得出结果【题目详解】假设,,,三式相乘得,由,所以,同理,,则与矛盾,即假设不成立,所以不能同时大于,所以至少有一个不大于,故选【题目点拨】本题考查的是用反证法证明数学命题,把要证的结论进行否定,在此基础上推出矛盾,是解题的关键,同时还运用了基本不等式,本题较为综合2、A【解题分析】
利用作差比较法判断得解.【题目详解】①,∵,∴,故.②∵,∴,所以a>ab.综上,故选A.【题目点拨】本题主要考查作差比较法比较实数的大小,意在考查学生对该知识的理解掌握水平,属于基础题.3、B【解题分析】由三视图判断底面为等腰直角三角形,三棱锥的高为2,则,选B.【考点定位】三视图与几何体的体积4、C【解题分析】
依次对选项求导,再判断导数的奇偶性即可得到答案。【题目详解】对于A,由可得,则为奇函数,关于原点对称;故A不满足题意;对于B,由可得,则,所以为非奇非偶函数,不关于轴对称,故B不满足题意;对于C,由可得,则为偶函数,关于轴对称,故C满足题意,正确;对于D,由可得,则,所以为非奇非偶函数,不关于轴对称,故D不满足题意;故答案选C【题目点拨】本题主要考查导数的求法,奇偶函数的判定,属于基础题。5、B【解题分析】直线4kx﹣4y﹣k=0可化为k(4x﹣1)﹣4y=0,故可知直线恒过定点(,0)∵抛物线y2=x的焦点坐标为(,0),准线方程为x=﹣,∴直线AB为过焦点的直线∴AB的中点到准线的距离∴弦AB的中点到直线x+=0的距离等于2+=.故选B.点睛:本题主要考查了抛物线的简单性质.解题的关键是利用了抛物线的定义.一般和抛物线有关的小题,很多时可以应用结论来处理的;平时练习时应多注意抛物线的结论的总结和应用.尤其和焦半径联系的题目,一般都和定义有关,实现点点距和点线距的转化.6、C【解题分析】试题分析:将5张奖票不放回地依次取出共有种不同的取法,若活动恰好在第四次抽奖结束,则前三次共抽到2张中奖票,第四次抽到最后一张中奖票.共有种取法,∴考点:古典概型及其概率计算公式7、A【解题分析】由已知得,由,则,又,所以.故选A.8、D【解题分析】
依照题意找出的限制条件,确定,得到函数的解析式,再根据函数图像逐一判断以下结论是否正确.【题目详解】因为函数的图象关于直线对称,所以,又在上为单调函数,,即,所以或,即或所以总有,故①②正确;由或图像知,在上单调递增,故③正确;当时,只有一个极大值点,不符合题意,故④不正确;综上,所有正确结论的编号是①②③.【题目点拨】本题主要考查三角函数的图像与性质,意在考查学生综合分析解决问题的能力.9、D【解题分析】
根据微积分基本原理计算得到答案.【题目详解】.故选:.【题目点拨】本题考查了定积分,意在考查学生的计算能力.10、B【解题分析】
求得的导数,可得切线的斜率,由直线的斜率公式,可得所求倾斜角.【题目详解】函数的导数为,可得在处的切线的斜率为,即,为倾斜角,可得.故选:B.【题目点拨】本题主要考查了导数的几何意义,函数在某点处的导数即为曲线在该点处的切线的斜率,是解题的关键,属于容易题.11、A【解题分析】分析:由三视图可知,该几何体是一个四棱锥,它的底面是一个长宽分别为的矩形,棱锥的高为,利用棱锥的体积公式可得结果.详解:根据三视图知:由三视图可知,该几何体是一个四棱锥,它的底面是个长宽分别为的矩形,棱锥的高为,,故选A.点睛:本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于中档题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.12、A【解题分析】
令,这样原不等式可以转化为,构造新函数,求导,并结合已知条件,可以判断出的单调性,利用单调性,从而可以解得,也就可以求解出,得到答案.【题目详解】解:令,则,令,则,在上单调递增,,故选A.【题目点拨】本题考查了利用转化法、构造函数法、求导法解决不等式解集问题,考查了数学运算能力和推理论证能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
可设出复数z,通过复数相等建立方程组,从而求得复数的模.【题目详解】由题意可设,由于,所以,因此,解得,因此复数的模为:.【题目点拨】本题主要考查复数的四则运算,相等的条件,比较基础.14、2【解题分析】抛物线的准线为,与圆相切,则,.15、1【解题分析】
设两项技术指标达标的概率分别为,得到,求得的值,进而得到,可得分布列和的值,得到答案.【题目详解】由题意,设两项技术指标达标的概率分别为,由题意,得,解得,所以,即一个零件经过检测为合格品的概率为,依题意知,所以.故答案为1.【题目点拨】本题主要考查了随机变量的分布列及其数学期望的计算,其中解答中根据概率的计算公式,求得的值,得到随机变量是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.16、【解题分析】
先求得圆的圆心与半径,可知直线一定过圆心得.又,,由均值不等式可求得最值.【题目详解】由题意可得的圆心为(-1,2),半径为2,而截得弦长为4,所以直线过圆心得,又,所以当且仅当时等号成立.【题目点拨】本题综合考查直线与圆,均值不等式求最值问题,本题的关键是由弦长为4,判断出直线过圆心.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)an【解题分析】
(1)将题目中的条件转化为首项和公比的式子,于是可得到通项公式;(2)通过条件先求出数列{bn}的通项,要想Tn【题目详解】解:(1)2SS所以a(2)当n=1时,a1当n≥2时,-1n+1将n=1代a1bbn当n≤5时,bn>0,当n≥6所以T【题目点拨】本题主要考查等比数列的通项公式,数列的最值问题,意在考查学生的基础知识,计算能力和分析能力,难度不大.18、(1),有理项有三项,分别为:;(2)128,128,相等【解题分析】
(1)首先找出展开式的前3项,然后利用等差数列的性质即可列出等式,求出n,于是求出通项,再得到有理项;(2)分别计算偶数项和奇数项的二项式系数和,比较大小即可.【题目详解】(1)二项展开式的前三项的系数分别为:,而前三项构成等差数列,故,解得或(舍去);所以,当时,为有理项,又且,所以符合要求;故有理项有三项,分别为:;(2)奇数项的二项式系数和为:,偶数项的二项式系数和为:,故奇数项的二项式系数的和等于偶数项的二项式系数的和.【题目点拨】本题主要考查二项式定理的通项,二项式系数和,注意二项式系数和与系数和的区别,意在考查学生的计算能力和分析能力,难度中等.19、(1)更适宜作为幼苗高度y关于时间x的回归方程类型;(2);预测第144天幼苗的高度大约为24.9cm.【解题分析】
(1)根据散点图,可直接判断出结果;(2)先令,根据题中数据,得到与的数据对,根据新的数据对,求出,,再由最小二乘法求出,即可得出回归方程,从而可求出预测值.【题目详解】解:(1)根据散点图,更适宜作为幼苗高度y关于时间x的回归方程类型;(2)令,则构造新的成对数据,如下表所示:x149162536491234567y0479111213容易计算,,.通过上表计算可得:因此∵回归直线过点(,),∴,故y关于的回归直线方程为从而可得:y关于x的回归方程为令x=144,则,所以预测第144天幼苗的高度大约为24.9cm.【题目点拨】本题主要考查非线性回归方程,先将问题转化为线性回归方程,根据最小二乘法求出参数的估计值,即可得出结果,属于常考题型.20、(1)证明见解析;(2).【解题分析】
(1)推导出PA⊥AD,PA⊥AB,由此能证明PA⊥平面ABCD.(2)以A为原点,AB,AD,AP为x,y,z轴的正方向建立空间直角坐标系,利用向量法能求出平面PBC与平面PAD所成锐二面角的余弦值.【题目详解】(1)因为,所以,即.同理可得.因为.所以平面.(2)由题意可知,两两垂直,故以A为原点,分别为轴的正方向建立如图所示的空间直角坐标系,则,所以.设平面的法向量为,则,不妨取则易得平面,所以平面的一个法向量为,记平面与平面所成锐二面角为,则故平面与平面所成锐二面角的余弦值为.【题目点拨】本题考查线面垂直的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.21、(I);(Ⅱ);(Ⅲ).【解题分析】
(I)先求出原函数的导函数,利用为切线斜率可求得切线方程;(Ⅱ)在区间上是单调递增函数转化为在上恒成立,从而求得答案;(Ⅲ)分别就,,,分别讨论即可求得最小
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年鲁教版选修5历史上册月考试卷
- 2025年沪科版九年级历史上册阶段测试试卷含答案
- 2025年人教版高三历史上册阶段测试试卷含答案
- 2025年度新型门窗技术研发与承揽合同2篇
- 二零二五版美容美发行业美容院会员积分体系开发与运营合同4篇
- 二零二五年度进口奶粉批文申请及市场准入服务合同4篇
- 二零二五年度南京市房产局发布的房产抵押权转让合同样本4篇
- 2025年度智能门窗控制系统供应合同范本4篇
- 二零二五年度旅游服务业农民工劳动合同范本大全4篇
- 2025年度绿色生态面料生产加工合作合同4篇
- 疥疮病人的护理
- 人工智能算法与实践-第16章 LSTM神经网络
- 17个岗位安全操作规程手册
- 2025年山东省济南市第一中学高三下学期期末统一考试物理试题含解析
- 中学安全办2024-2025学年工作计划
- 网络安全保障服务方案(网络安全运维、重保服务)
- 2024年乡村振兴(产业、文化、生态)等实施战略知识考试题库与答案
- 现代科学技术概论智慧树知到期末考试答案章节答案2024年成都师范学院
- 软件模块化设计与开发标准与规范
- 2024年辽宁铁道职业技术学院高职单招(英语/数学/语文)笔试历年参考题库含答案解析
- 有机农业种植模式
评论
0/150
提交评论