2024届四川省眉山车城中学数学高二下期末监测试题含解析_第1页
2024届四川省眉山车城中学数学高二下期末监测试题含解析_第2页
2024届四川省眉山车城中学数学高二下期末监测试题含解析_第3页
2024届四川省眉山车城中学数学高二下期末监测试题含解析_第4页
2024届四川省眉山车城中学数学高二下期末监测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届四川省眉山车城中学数学高二下期末监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,若将其图像右移个单位后,图象关于原点对称,则的最小值是()A. B. C. D.2.盒中装有10个乒乓球,其中6个新球,4个旧球,不放回地依次取出2个球使用,在第一次取出新球的条件下,第二次也取到新球的概率为()A. B. C. D.3.计算=A. B. C. D.4.在的二项展开式中,二项式系数的最大值为,含项的系数为,则()A. B. C. D.5.若样本数据的均值与方差分别为和,则数据的均值与方差分别为()A., B. C. D.6.已知函数的图象如图所示,则函数的对称中心坐标为()A. B.C. D.7.已知,且,则的取值范围为()A. B. C. D.8.已知复数满足(为虚数单位),则复数的虚部等于()A.1 B.-1 C.2 D.-29.执行如图所示程序框图,输出的的值为()A. B. C.3 D.410.已知集合,,则=()A. B. C. D.11.如图是函数的导函数的图象,给出下列命题:①-2是函数的极值点;②是函数的极值点;③在处取得极大值;④函数在区间上单调递增.则正确命题的序号是A.①③ B.②④ C.②③ D.①④12.设复数,是的共轭复数,则的虚部为A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线的左右焦点分别为,过点的直线交双曲线右支于两点,若是以为直角顶点的等腰三角形,则的面积为__________.14.一支田径队有男运动员56人,女运动员42人,用分层抽样的方法,按性别从全体运动员中抽出一个容量为7的样本,则抽出的女运动员的人数是________.15.已知集合,且下列三个关系:有且只有一个正确,则函数的值域是_______.16.若函数在区间上为单调增函数,则的取值范围是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)假设某士兵远程射击一个易爆目标,射击一次击中目标的概率为,三次射中目标或连续两次射中目标,该目标爆炸,停止射击,否则就一直独立地射击至子弹用完.现有5发子弹,设耗用子弹数为随机变量X.(1)若该士兵射击两次,求至少射中一次目标的概率;(2)求随机变量X的概率分布与数学期望E(X).18.(12分)过椭圆:右焦点的直线交于,两点,且椭圆的长轴长为短轴长的倍.(1)求的方程;(2),为上的两点,若四边形的对角线分别为,,且,求四边形面积的最大值.19.(12分)[选修4-4:坐标系与参数方程]在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数),且与曲线交于,两点.以直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系.(1)求曲线的极坐标方程;(2)已知点的极坐标为,若,求.20.(12分)已知椭圆过点,且离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)为椭圆的左、右顶点,直线与轴交于点,点是椭圆上异于的动点,直线分别交直线于两点.证明:恒为定值.21.(12分)(1)证明不等式:,;(2)已知,;;p是q的必要不充分条件,求的取值范围.22.(10分)如图,四边形为矩形,平面平面,,,,,点在线段上.(1)求证:平面;(2)若二面角的余弦值为,求的长度.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】

利用两角和差的三角公式化简函数的解析式,再利用函数y=Asin(ωx+φ)的图象变换规律,三角函数的图象的对称性,求得φ的最小值.【题目详解】∵f(x)=sinxcosx=2sin(x)(x∈R),若将其图象右移φ(φ>0)个单位后,可得y=2sin(x﹣φ)的图象;若所得图象关于原点对称,则﹣φkπ,k∈Z,故φ的最小值为,故选:C.【题目点拨】本题主要考查两角和差的三角公式,函数y=Asin(ωx+φ)的图象变换规律,三角函数的图象的对称性,属于基础题.2、C【解题分析】试题分析:在第一次取出新球的条件下,盒子中还有9个球,这9个球中有5个新球和4个旧球,故第二次也取到新球的概率为考点:古典概型概率3、B【解题分析】分析:根据复数乘法法则求结果.详解:选B.点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如.其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为4、B【解题分析】

由题意,先写出二项展开式的通项,由此得出二项式系数的最大值,以及含项的系数,进而可求出结果.【题目详解】因为的二项展开式的通项为:,因此二项式系数的最大值为:,令得,所以,含项的系数为,因此.故选:B.【题目点拨】本题主要考查求二项式系数的最大值,以及求指定项的系数,熟记二项式定理即可,属于常考题型.5、D【解题分析】

直接根据均值和方差的定义求解即可.【题目详解】解:由题意有,,则,∴新数据的方差是,故选:D.【题目点拨】本题主要考查均值和方差的求法,属于基础题.6、D【解题分析】

试题分析:由图象可知又,又,.,又,所以,由,得,则的对称中心坐标为.考点:1.三角函数的性质;2.三角函数图像的性质.【方法点睛】根据,的图象求解析式的步骤:1.首先确定振幅和周期,从而得到与;2.求的值时最好选用最值点求,峰点:,;谷点:,,也可用零点求,但要区分该零点是升零点,还是降零点,升零点(图象上升时与轴的交点):,;降零点(图象下降时与轴的交点):,.7、D【解题分析】

由三个正数的和为21,可知三个正数的平均数为7,因此可以用反证法来求出的取值范围.【题目详解】由三个正数的和为21,可知三个正数的平均数为7,假设,因为,则有,这与,相矛盾,故假设不成立,即,故本题选D.解法二:因为,所以【题目点拨】本题考查了反证法的应用,正确运用反证法的过程是解题的关键.8、A【解题分析】由题设可得,则复数的虚部等于,应选答案A。9、B【解题分析】分析:根据判断框的条件确定退出循环体的k值,再根据框图的流程确定算法的功能,利用约分消项法求解.详解:由题可知:此时输出S=故选B.点睛:本题考查了循环结构的程序框图,根据框图的流程判断算法的功能以及对对数公式的准确运用是关键.属于基础题.10、B【解题分析】

根据交集的概念,结合题中条件,即可求出结果.【题目详解】在数轴上画出集合A和集合B,找出公共部分,如图,可知故选B【题目点拨】本题主要考查集合交集的运算,熟记概念即可,属于基础题型.11、D【解题分析】分析:由条件利用导函数的图象特征,利用导数研究函数的单调性和极值,逐一判断各个选项是否正确,从而得出结论.详解:根据导函数y=f′(x)的图象可得,y=f′(x)在(﹣∞,﹣2)上大于零,在(﹣2,2)、(2,+∞)上大于零,且f′(﹣2)=0,故函数f(x)在(﹣∞,﹣2)上为减函数,在(﹣2,+∞)、(2,+∞)上为增函数.故﹣2是函数y=f(x)的极小值点,故①正确;故1不是函数y=f(x)的极值点,故②不正确;根据函数-1的两侧均为单调递增函数,故-1不是极值点.根据y=f(x)=在区间(﹣2,2)上的导数大于或等于零,故f(x)在区间(﹣2,2)上单调递增,故④正确,故选:D.点睛:本题主要考查命题真假的判断,利用导数研究函数的单调性和极值,属于中档题.导函数的正负代表了原函数的单调性,极值点即导函数的零点,但是必须是变号零点,即在零点两侧正负相反;极值即将极值点代入原函数取得的函数值,注意分清楚这些概念.12、C【解题分析】

由,得,代入,利用复数的代数形式的乘除运算,即可求解.【题目详解】由题意,复数,得,则,所以复数的虚部为,故选C.【题目点拨】本题主要考查了共轭复数的概念,以及复数的代数形式的运算,其中解答中熟记复数的基本概念,以及复数的运算法则是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】设,根据双曲线的定义,有,即.,,故三角形面积为.点睛:本题主要考查双曲线的定义,考查直线与圆锥曲线的位置关系,考查数形结合的数学思想方法和化归与转化的数学思想方法.解答直线与圆锥曲线位置关系题目时,首先根据题意画出曲线的图像,然后结合圆锥曲线的定义和题目所给已知条件来求解.利用题目所给等腰直角三角形,结合定义可求得直角三角形的边长,由此求得面积.14、3【解题分析】

直接根据分层抽样比例关系计算得到答案.【题目详解】根据题意:抽出的女运动员的人数为.故答案为:.【题目点拨】本题考查了分层抽样,属于简单题.15、【解题分析】分析:根据集合相等的条件,列出a、b、c所有的取值情况,再判断是否符合条件,求出a,b,c的值,结合的最值即可求出函数的值域.详解:由{a,b,c}={2,3,4}得,a、b、c的取值有以下情况:当a=2时,b=3、c=4时,a≠3,b=3,c≠4都正确,不满足条件.当a=2时,b=4、c=3时,a≠3成立,c≠4成立,此时不满足题意;当a=3时,b=2、c=4时,都不正确,此时不满足题意;当a=3时,b=4、c=2时,c≠4成立,此时满足题意;当a=4时,b=2,c=3时,a≠3,c≠4成立,此时不满足题意;当a=4时,b=3、c=2时,a≠3,b=3成立,此时不满足题意;综上得,a=3、b=4、c=2,则函数=,当x>4时,f(x)=2x>24=16,当x≤4时,f(x)=(x﹣2)2+3≥3,综上f(x)≥3,即函数的值域为[3,+∞),故答案为[3,+∞).点睛:本题主要考查函数的值域的计算,根据集合相等关系以及命题的真假条件求出a,b,c的值是解决本题的关键.16、[1,+∞)【解题分析】函数在区间上为单调增函数等价于导函数在此区间恒大于等于0,故三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1).(2)分布列见解析,.【解题分析】分析:(1)利用对立事件即可求出答案;(2)耗用子弹数的所有可能取值为2,3,4,5,分别求出相应的概率即可.详解:(1)该士兵射击两次,至少射中一次目标的概率为.(2)耗用子弹数的所有可能取值为2,3,4,5.当时,表示射击两次,且连续击中目标,;当时,表示射击三次,第一次未击中目标,且第二次和第三次连续击中目标,;当时,表示射击四次,第二次未击中目标,且第三次和第四次连续击中目标,;当时,表示射击五次,均未击中目标,或只击中一次目标,或击中两次目标前四次击中不连续两次或前四次击中一次且第五次击中,或击中三次第五次击中且前四次无连续击中。;随机变量的数学期望.点睛:本题考查离散型随机变量的分布列和数学期望的求法,解题时要认真审题.18、(1);(2).【解题分析】分析:(1)根据题意,结合性质,列出关于、、的方程组,求出、、,即可得到的方程;(2)先求出,直线的方程为,联立方程组消去得:,利用韦达定理、弦长公式可得,结合可得四边形的面积,从而可得结果.详解:(1)由题意知解得,,所以的方程为:.(2)联立方程组,解得、,求得.依题意可设直线的方程为:,与线段相交,联立方程组消去得:,设,,则,四边形的面积,当时,最大,最大值为.所以四边形的面积最大值为.点睛:求椭圆标准方程的方法一般为待定系数法,根据条件确定关于的方程组,解出从而写出椭圆的标准方程.解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.19、(1).(2).【解题分析】分析:(1)先求出曲线的直角坐标方程,再利用直角坐标与极坐标的互化即可;(2)利用参数的几何意义可得.详解:(1)曲线的直角坐标方程为,即,∵,,∴,即,此即为曲线的极坐标方程.(2)点的直角坐标为,设,两点对应的参数为,,将直线的参数方程代入,得,则,由参数的几何意义可知,,,故.点睛:求解与极坐标有关的问题的主要方法(1)直接利用极坐标系求解,可与数形结合思想配合使用;(2)转化为直角坐标系,用直角坐标求解.使用后一种方法时,应注意若结果要求的是极坐标,还应将直角坐标化为极坐标.20、(Ⅰ).(Ⅱ)为定值.证明见解析.【解题分析】本试题主要是考出了椭圆方程的求解,椭圆的几何性质,直线与椭圆的位置关系的运用的综合考查,体现了运用代数的方法解决解析几何的本质的运用.(1)首先根据题意的几何性质来表示得到关于a,b,c的关系式,从而得到其椭圆的方程.(2设出直线方程,设点P的坐标,点斜式得到AP的方程,然后联立方程组,可知借助于韦达定理表示出长度,进而证明为定值.(Ⅰ)解:由题意可知,,,解得.…………4分所以椭圆的方程为.…………5分(Ⅱ)证明:由(Ⅰ)可知,,.设,依题意,于是直线的方程为,令,则.即.…………7分又直线的方程为,令,则,即.…………9分…………11分又在上,所以,即,代入上式,得,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论