2024届山西省怀仁一中数学高二下期末质量检测试题含解析_第1页
2024届山西省怀仁一中数学高二下期末质量检测试题含解析_第2页
2024届山西省怀仁一中数学高二下期末质量检测试题含解析_第3页
2024届山西省怀仁一中数学高二下期末质量检测试题含解析_第4页
2024届山西省怀仁一中数学高二下期末质量检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山西省怀仁一中数学高二下期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知三棱锥的底面是等边三角形,点在平面上的射影在内(不包括边界),.记,与底面所成角为,;二面角,的平面角为,,则,,,之间的大小关系等确定的是()A. B.C.是最小角,是最大角 D.只能确定,2.命题:,的否定是()A., B.,C., D.,3.已知为抛物线的焦点,点的坐标为,过点作斜率为的直线与抛物线交于、两点,延长、交抛物线于、两点设直线的斜率为,则()A.1 B.2 C.3 D.44.现有8个人排成一排照相,其中甲、乙、丙三人两两不相邻的排法的种数为()A. B. C. D.5.某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.6.已知随机变量的分布如下表所示,则等于()A.0 B.-0.2 C.-1 D.-0.37.用数学归纳法证明“”,则当时,应当在时对应的等式的左边加上()A. B.C. D.8.在空间中,“直线平面”是“直线与平面内无穷多条直线都垂直”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.非充分非必要条件9.为了得到函数的图象,只需把函数的图象上所有的点()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度10.若复数满足,其中为虚数单位,则()A. B. C. D.11.已知函数在时取得极大值,则的取值范围是()A. B. C. D.12.某军工企业为某种型号的新式步枪生产了一批枪管,其口径误差(单位:微米)服从正态分布,从已经生产出的枪管中随机取出一只,则其口径误差在区间内的概率为()(附:若随机变量服从正态分布,则,)A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法从随机数表的第1行第4列数由左到右由上到下开始读取,则选出来的第5个个体的编号为____.第1行78166571023060140102406090280198第2行3204923449358200362348696938748114.在实数范围内,不等式的解集为___________.15.设离散型随机变量的概率分布如下:则的值为__________.16.在我国南宋数学家杨辉所著的《详解九章算法》(1261年)一书中,用如图所示的三角形,解释二项和的乘方规律.在欧洲直到1623年以后,法国数学家布莱士•帕斯卡的著作(1655年)介绍了这个三角形,近年来,国外也逐渐承认这项成果属于中国,所以有些书上称这是“中国三角形”,如图.17世纪德国数学家莱布尼茨发现了“莱布尼茨三角形”,如图.在杨辉三角中,相邻两行满足关系式:,其中是行数,.请类比上式,在莱布尼茨三角形中相邻两行满足的关系式是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某校为了了解学生对电子竞技的兴趣,从该校高二年级的学生中随机抽取了人进行检查,已知这人中有名男生对电子竞技有兴趣,而对电子竞技没兴趣的学生人数与电子竞技竞技有兴趣的女生人数一样多,且女生中有的人对电子竞技有兴趣.在被抽取的女生中与名高二班的学生,其中有名女生对电子产品竞技有兴趣,先从这名学生中随机抽取人,求其中至少有人对电子竞技有兴趣的概率;完成下面的列联表,并判断是否有的把握认为“电子竞技的兴趣与性别有关”.有兴趣没兴趣合计男生女生合计参考数据:参考公式:18.(12分)已知函数.(1)若,求函数的极值;(2)当时,判断函数在区间上零点的个数.19.(12分)已知函数f(x)=ln.(1)求函数f(x)的定义域,并判断函数f(x)的奇偶性;(2)对于x∈[2,6],f(x)=ln>ln恒成立,求实数m的取值范围.20.(12分)已知全集,集合,.(1)若,求;(2)若,求的取值范围.21.(12分)有3名女生和5名男生,按照下列条件排队,求各有多少种不同的排队方法?(1)3名女生排在一起;(2)3名女生次序一定,但不一定相邻;(3)3名女生不站在排头和排尾,也互不相邻;(4)每两名女生之间至少有两名男生;(5)3名女生中,A,B要相邻,A,C不相邻.22.(10分)已知椭圆x2a2+y2b2=1(a>b>0)(1)求椭圆的方程;(2)若直线l经过F2与椭圆交于M,N

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】

过作PO⊥平面ABC,垂足为,过作OD⊥AB,交AB于D,过作OE⊥BC,交BC于E,过作OF⊥AC,交AC于F,推导出OA<OB<OC,AB=BC=AC,OD<OF<OE,且OE<OB,OF<OA,由此得到结论.【题目详解】解:如图,过作PO⊥平面ABC,垂足为,过作OD⊥AB,交AB于D,过作OE⊥BC,交BC于E,过作OF⊥AC,交AC于F,连结OA,OB,OC,PD,PE,PF,∵△ABC为正三角形,PA<PB<PC,二面角P−BC−A,二面角P−AC−B的大小分别为,,PA,PB与底面所成角为,,∴=∠PAO,=∠PBO,γ=∠PEO,=∠PFO,OA<OB<OC,AB=BC=AC,在直角三角形OAF中,,在直角三角形OBE中,,OA<OB,∠OAF<∠OBE,则OF<OE,同理可得OD<OF,∴OD<OF<OE,且OE<OB,OF<OA,∴<,<,>,<,可得是最小角,是最大角,故选:C.【题目点拨】本题考查线面角、二面角的大小的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.2、C【解题分析】

根据全称命题的否定是特称命题,即可进行选择.【题目详解】因为全称命题的否定是特称命题,故可得,的否定是,.故选:C.【题目点拨】本题考查全称命题的否定,属基础题.3、D【解题分析】

设,,联立直线方程与抛物线方程可得,设,,则,,设AC,BD所在的直线方程可得,,由此可得的值.【题目详解】设过点F作斜率为的直线方程为:,

联立抛物线C:可得:,

设A,B两点的坐标为:,,

则,

设,,

则,同理,

设AC所在的直线方程为,

联立,得,

,同理,,

则.

故选:D.【题目点拨】本题考查直线与抛物线的位置关系,考查斜率的计算,考查学生的计算能力,属于中档题.4、C【解题分析】先排剩下5人,再从产生的6个空格中选3个位置排甲、乙、丙三人,即,选C.5、A【解题分析】

该空间几何体是由具有相同底面和高的三棱柱和三棱锥组合而成,分别求出体积即可.【题目详解】该空间几何体是由具有相同底面和高的三棱柱和三棱锥组合而成,底面三角形的面积为,三棱柱和三棱锥的高为1,则三棱柱的体积,三棱锥的体积为,故该几何体的体积为.故选A.【题目点拨】本题考查了空间组合体的三视图,考查了学生的空间想象能力,属于基础题.6、B【解题分析】

先根据题目条件求出值,再由离散型随机变量的期望公式得到答案。【题目详解】由题可得得,则由离散型随机变量的期望公式得故选B【题目点拨】本题考查离散型随机变量的分布列和期望公式,属于一般题。7、C【解题分析】

由数学归纳法可知时,左端,当时,,即可得到答案.【题目详解】由题意,用数学归纳法法证明等式时,假设时,左端,当时,,所以由到时需要添加的项数是,故选C.【题目点拨】本题主要考查了数学归纳法的应用,着重考查了理解与观察能力,以及推理与论证能力,属于基础题.8、A【解题分析】若“直线平面”则“直线与平面内无穷多条直线都垂直”,正确;反之,若“直线与平面内无穷多条直线都垂直”则“直线平面”是错误的,故直线平面”是“直线与平面内无穷多条直线都垂直”的充分非必要条件.故选A.9、D【解题分析】

通过变形,通过“左加右减”即可得到答案.【题目详解】根据题意,故只需把函数的图象上所有的点向右平移个单位长度可得到函数的图象,故答案为D.【题目点拨】本题主要考查三角函数的平移变换,难度不大.10、A【解题分析】

由,得,则,故选A.11、A【解题分析】

先对进行求导,然后分别讨论和时的极值点情况,随后得到答案.【题目详解】由得,当时,,由,得,由,得.所以在取得极小值,不符合;当时,令,得或,为使在时取得极大值,则有,所以,所以选A.【题目点拨】本题主要考查函数极值点中含参问题,意在考查学生的分析能力和计算能力,对学生的分类讨论思想要求较高,难度较大.12、C【解题分析】

根据已知可得,结合正态分布的对称性,即可求解.【题目详解】.故选:C【题目点拨】本题考查正态分布中两个量和的应用,以及正态分布的对称性,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、02;【解题分析】

第1行第4列数是6,由左到右进行读取10,06,01,09,02.【题目详解】第1行第4列数是6,由左到右进行读取10,06,01,09,02,所以第5个个体的编号为02.【题目点拨】随机数表中如果个体编号是2位数,则从规定的地方数起,是每次数两位数,如果碰到超出编号范围,则不选;如果碰到选过的,也不选.14、【解题分析】因此解集为.考点:本题主要考查绝对值不等式的解法,考查运用能力.15、【解题分析】分析:离散型随机变量的概率之和为1详解:解得:。点睛:离散型随机变量的概率之和为1,是分布列的性质。16、【解题分析】分析:这是一个考查类比推理的题目,解题的关键是仔细观察图中给出的莱布尼茨三角形,并从三解数阵中,找出行与行之间数的关系,探究规律并其表示出来.详解:类比观察得,将莱布尼茨三角形的每一行都能提出倍数,而相邻两项之和是上一行的两者相拱之数,所以类比式子,有.故答案为.点睛:这是一道新运算类的题目,其特点一般是“新”而不“难”,处理的方法一般为:根据新运算的定义,将已知中的数据代入进行运算,易得最终结果.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、;列联表见解析,没有.【解题分析】

(1)计算出从名学生中随机抽取人的可能,再计算出抽到的人中至少有人对电子竞技有兴趣的可能,利用古典概型公式即得答案;(2)先填写列联表,然后计算,与比较大小即可得到答案.【题目详解】从名学生中随机抽取人,共有种不同的抽取方案;抽到的人中至少有人对电子竞技有兴趣的方案数有:种抽取人中至少有人对电子竞技有兴趣的概率为.设对电子竞技没兴趣的学生人数为,对电子竞技没兴趣的学生人数与对电子竞技有兴趣的女生人数一样多由题,解得.又女生中有的人对电子竞技有兴趣,女生人数为男生人数为,其中有人对电子竞技没兴趣得到下面列联表没用的把握认为“对电子竞技的兴趣与性别有关”.【题目点拨】本题主要考查古典概型,独立性检验统计案例,意在考查学生的计算能力,分析能力,难度不大.18、(1)详见解析;(2)详见解析.【解题分析】

试题分析:(1)求导数得,又,所以,由此可得函数的单调性,进而可求得极值;(2)由,得.因此分和两种情况判断函数的单调性,然后根据零点存在定理判断函数零点的个数.试题解析:(1)∵,∴,因为,所以,当x变化时,的变化情况如下表:100递增极大值递减极小值递增由表可得当时,有极大值,且极大值为,当时,有极小值,且极小值为.(2)由(1)得.∵,∴.①当时,在上单调递增,在上递减又因为所以在(0,1)和(1,2)上各有一个零点,所以上有两个零点.②当,即时,在上单调递增,在上递减,在上递增,又因为所以在上有且只有一个零点,在上没有零点,所以在上有且只有只有一个零点.综上:当时,在上有两个零点;当时,在上有且只有一个零点.点睛:利用导数研究方程根(函数零点)的方法研究方程根(函数零点)的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,根据题目要求,画出函数图象的走势规律,标明函数极(最)值的位置,通过数形结合的思想去分析问题,可以使得问题的求解有一个清晰、直观的整体展现.19、(1)(-∞,-1)∪(1,+∞),奇函数.(2)0<m<7.【解题分析】

(1)解不等式>0,即得函数的定义域.再利用奇偶函数的判定方法判断函数的奇偶性.(2)转化成以0<m<(x+1)(7-x)在x∈[2,6]上恒成立.再求出函数的最小值得解.【题目详解】(1)由>0,解得x<-1或x>1,所以函数f(x)的定义域为(-∞,-1)∪(1,+∞),当x∈(-∞,-1)∪(1,+∞)时,f(-x)=ln=ln=ln=-ln=-f(x),所以f(x)=ln是奇函数.(2)由于x∈[2,6]时,f(x)=ln>ln恒成立,所以>>0,因为x∈[2,6],所以0<m<(x+1)(7-x)在x∈[2,6]上恒成立.令g(x)=(x+1)(7-x)=-(x-3)2+16,x∈[2,6],由二次函数的性质可知,x∈[2,3]时函数g(x)单调递增,x∈[3,6]时函数g(x)单调递减,即x∈[2,6]时,g(x)min=g(6)=7,所以0<m<7.【题目点拨】本题主要考查函数定义域的求法,考查对数函数的单调性和不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平,属于中档题.20、(1);(2)【解题分析】

(1)分别求出和,再取交集,即可。(2)因为且恒成立,所以,解出即可。【题目详解】解:(1)若,则,所以或,又因为,所以。(2)由(1)得,,又因为,所以,解得。【题目点拨】本题考查了交、补集的混合运算,考查了利用集合间的关系求参数的取值问题,解答此题的关键是对集合端点值的取舍,是基础题.21、(1)4320(2)6720(3)2880(4)2880(5)5760【解题分析】

(1)根据题意,用捆绑法分2步分析:①,3名女生看成一个整体,②,将这个整体与5名男生全排列,由分步计数原理计算可得答案;(2)根据题意,先计算8人排成一排的排法,由倍分法分析可得答案;(3)根据题意,分2步分析:①,将5名男生全排列,②,将3名女生安排在5名男生形成的空位中,由分步计数原理计算可得答案;(4)根据题意,分2种情况讨论:①,两名女生之间有3名男生,另两名女生之间有2名男生,②,任意2名女生之间都有2名男生,分别求出每种情况下的排法数目,由加法原理计算可得答案;(5)根据题意,分2种情况讨论:①,A、B、C三人相邻,则B在中间,A、C在两边,②,A、B、C三人不全相邻,分别求出每种情况下的排法数目,由加法原理计算可得答案.【题目详解】(1)根据题意,分2步分析:①,3名女生看成一个整体,考虑其顺序有A3②,将这个整体与5名男生全排列,有A6则3名女生排在一起的排法有6×720=4320种;(2)根据题意,将8人排成一排,有A8由于3名女生次序一定,则有A8(3)根据题意,分2步分析:①,将5名男生全排列,有A5②,除去两端,有4个空位

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论