版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省名师联盟2024届数学高二第二学期期末统考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.直线的一个方向向量是().A. B. C. D.2.若直线的倾斜角为,则()A.等于 B.等于 C.等于 D.不存在3.x+1A.第5项 B.第5项或第6项 C.第6项 D.不存在4.若,则,就称A是伙伴关系集合,集合的所有非空子集中,具有伙伴关系的集合的个数为()A.15 B.16 C. D.5.某快递公司的四个快递点呈环形分布(如图所示),每个快递点均已配备快递车辆10辆.因业务发展需要,需将四个快递点的快递车辆分别调整为5,7,14,14辆,要求调整只能在相邻的两个快递点间进行,且每次只能调整1辆快递车辆,则A.最少需要8次调整,相应的可行方案有1种B.最少需要8次调整,相应的可行方案有2种C.最少需要9次调整,相应的可行方案有1种D.最少需要9次调整,相应的可行方案有2种6.()A.1 B. C. D.7.在极坐标系中,曲线的极坐标方程为,曲线的极坐标方程为,若曲线与的关系为()A.外离 B.相交 C.相切 D.内含8.斐波那契螺旋线,也称“黄金蜾旋线”,是根据斐波那契数列(1,1,2,3,5,8…)画出来的螺旋曲线,由中世纪意大利数学家列奥纳多•斐波那契最先提出.如图,矩形ABCD是以斐波那契数为边长的正方形拼接而成的,在每个正方形中作一个圆心角为90°的圆弧,这些圆弧所连成的弧线就是斐波那契螺旋线的一部分.在矩形ABCD内任取一点,该点取自阴影部分的概率为()A. B. C. D.9.下列随机试验的结果,不能用离散型随机变量表示的是()A.将一枚均匀正方体骰子掷两次,所得点数之和B.某篮球运动员6次罚球中投进的球数C.电视机的使用寿命D.从含有3件次品的50件产品中,任取2件,其中抽到次品的件数10.抛掷一枚均匀的骰子两次,在下列事件中,与事件“第一次得到6点”不互相独立的事件是()A.“两次得到的点数和是12”B.“第二次得到6点”C.“第二次的点数不超过3点”D.“第二次的点数是奇数”11.已知命题若实数满足,则或,,,则下列命题正确的是()A. B. C. D.12.数学归纳法证明1n+1+1A.12k+2 B.12k+1 C.1二、填空题:本题共4小题,每小题5分,共20分。13.函数的图像在处的切线方程为_______.14.在的展开式中,的系数为________15.已知函数,实数满足,则的值为__________.16.函数部分图象如图,则函数解析式为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆:的左、右焦点分别为,,离心率为,点是椭圆上的一个动点,且面积的最大值为.(1)求椭圆的方程;(2)设斜率不为零的直线与椭圆的另一个交点为,且的垂直平分线交轴于点,求直线的斜率.18.(12分)在平面直角坐标系中,直线的参数方程为(为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,已知圆经过极点,且其圆心的极坐标为.(1)求圆的极坐标方程;(2)若射线分别与圆和直线交于点,(点异于坐标原点),求线段的长.19.(12分)大型水果超市每天以元/千克的价格从水果基地购进若干水果,然后以元/千克的价格出售,若有剩余,则将剩余的水果以元/千克的价格退回水果基地,为了确定进货数量,该超市记录了水果最近天的日需求量(单位:千克),整理得下表:日需求量频数以天记录的各日需求量的频率代替各日需求量的概率.(1)求该超市水果日需求量(单位:千克)的分布列;(2)若该超市一天购进水果千克,记超市当天水果获得的利润为(单位:元),求的分布列及其数学期望.20.(12分)已知函数f(x)=2ln(1)当a=2时,求f(x)的图像在x=1处的切线方程;(2)若函数g(x)=f(x)-ax+m在[1e,e]21.(12分)在中,角,,所对的边分别是,,,已知.(1)求的值;(2)若,,,为垂足,求的长.22.(10分)已知矩阵,向量.(1)求的特征值、和特征向量、;(2)求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
先求得直线的斜率,由此求得直线的方向向量.【题目详解】直线的斜率为,故其方向向量为.故选:D【题目点拨】本小题主要考查直线的方向向量的求法,属于基础题.2、C【解题分析】分析:根据画出的直线得直线的倾斜角.详解:直线x=1的倾斜角为故答案为:C.点睛:(1)本题主要考查特殊直线的倾斜角,意在考查学生对该知识的掌握水平.(2)任意一条直线都有倾斜角,但是不是每一条直线都有斜率.3、C【解题分析】
根据题意,写出(x+1x)10展开式中的通项为Tr+1,令x【题目详解】解:根据题意,(x+1x)令10-2r=0,可得r=5;则其常数项为第5+1=6项;故选:C.【题目点拨】本题考查二项式系数的性质,解题的关键是正确应用二项式定理,写出二项式展开式,其次注意项数值与r的关系,属于基础题.4、A【解题分析】
首先确定具有伙伴集合的元素有,“和”,“和”等四种可能,它们组成的非空子集的个数为即为所求.【题目详解】根据伙伴关系集合的概念可知:-1和1本身也具备这种运算,这样所求集合即由-1,1,3和,2和这“四大”元素所组成的集合的非空子集.所以满足条件的集合的个数为24-1=15.故选A.【题目点拨】本小题主要考查新定义概念的理解,考查集合子集的个数以及非空子集的个数,属于基础题.5、D【解题分析】
先阅读题意,再结合简单的合情推理即可得解.【题目详解】(1)A→D调5辆,D→C调1辆,B→C调3辆,共调整:5+1+3=9次,(2)A→D调4辆,A→B调1辆,B→C调4辆,共调整:4+1+4=9次,故选:D【题目点拨】本题考查了阅读能力及简单的合情推理,属中档题.6、D【解题分析】
根据微积分基本原理计算得到答案.【题目详解】.故选:.【题目点拨】本题考查了定积分,意在考查学生的计算能力.7、B【解题分析】
将两曲线方程化为普通方程,可得知两曲线均为圆,计算出两圆圆心距,并将圆心距与两圆半径差的绝对值和两半径之和进行大小比较,可得出两曲线的位置关系.【题目详解】在曲线的极坐标方程两边同时乘以,得,化为普通方程得,即,则曲线是以点为圆心,以为半径的圆,同理可知,曲线的普通方程为,则曲线是以点为圆心,以为半径的圆,两圆圆心距为,,,,因此,曲线与相交,故选:B.【题目点拨】本题考查两圆位置关系的判断,考查曲线极坐标方程与普通方程的互化,对于这类问题,通常将圆的方程化为标准方程,利用两圆圆心距与半径和差的大小关系来得出两圆的位置关系,考查分析问题和解决问题的能力,属于中等题.8、B【解题分析】
根据几何概型的概率公式,分别求出阴影部分面积和矩形ABCD的面积,即可求得。【题目详解】由已知可得:矩形的面积为,又阴影部分的面积为,即点取自阴影部分的概率为,故选。【题目点拨】本题主要考查面积型的几何概型的概率求法。9、C【解题分析】分析:直接利用离散型随机变量的定义逐一判断即可.详解:随机取值的变量就是随机变量,随机变量分为离散型随机变量与连续型随机变量两种,随机变量的函数仍为随机变量,有些随机变量,它全部可能取到的不相同的值是有限个或可列无限多个,这种随机变量称为“离散型随机变量”,题目中都属于离散型随机变量,而电视机的使用寿命属于连续型随机变量,故选C.点睛:随机取值的变量就是随机变量,随机变量分为离散型随机变量与连续型随机变量两种(变量分为定性和定量两类,其中定性变量又分为分类变量和有序变量;定量变量分为离散型和连续型),随机变量的函数仍为随机变量,本题考的离散型随机变量.10、A【解题分析】
利用独立事件的概念即可判断.【题目详解】“第二次得到6点”,“第二次的点数不超过3点”,“第二次的点数是奇数”与事件“第一次得到6点”均相互独立,而对于“两次得到的点数和是12”则第一次一定是6点,第二次也是6点,故不是相互独立,故选D.【题目点拨】本题考查了相互独立事件,关键是掌握其概念,属于基础题.11、C【解题分析】由题意可知,p是真命题,q是假命题,则是真命题.本题选择C选项.12、D【解题分析】
求出当n=k时,左边的代数式,当n=k+1时,左边的代数式,相减可得结果.【题目详解】当n=k时,左边的代数式为1k+1当n=k+1时,左边的代数式为1k+2故用n=k+1时左边的代数式减去n=k时左边的代数式的结果为:12k+1【题目点拨】本题考查用数学归纳法证明不等式,注意式子的结构特征,以及从n=k到n=k+1项的变化,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
对函数求导,把分别代入原函数与导数中分别求出切点坐标与切线斜率,进而求得切线方程。【题目详解】,函数的图像在处的切线方程为,即.【题目点拨】本题考查导数的几何意义和直线的点斜式,关键求出某点处切线的斜率即该点处的导数值,属于基础题。14、【解题分析】
由题意,二项式展开式的通项为,令,即可求解.【题目详解】由题意,二项式的展开式的通项为,令,即,可得,即展开式中的系数为40.【题目点拨】本题主要考查了二项式展开式中项的系数问题,其中解答中熟记二项展开式的通项是解答此类问题的关键,着重考查了推理与运算能力,属于基础题.15、【解题分析】
根据图像分析,设,代入函数求值即可.【题目详解】由图像可知,设,,即.故填:1.【题目点拨】本题考查了的图像,以及对数运算法则,属于基础题型,本题的关键是根据图像,判断和的正负,去绝对值.16、【解题分析】
先计算出,结合图象得出该函数的周期,可得出,然后将点代入函数解析式,结合条件可求出的值,由此得出所求函数的解析式.【题目详解】由图象可得,且该函数的最小正周期为,,所以,.将点代入函数解析式得,得.,即,,所以,得.因此,所求函数解析式为,故答案为.【题目点拨】本题考查三角函数的解析式的求解,求解步骤如下:(1)求、:,;(2)求:根据题中信息求出最小正周期,利用公式求出的值;(3)求:将对称中心点和最高、最低点的坐标代入函数解析式,若选择对称中心点,还要注意函数在该点附近的单调性.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解题分析】
(1)由题得到关于a,b,c的方程,解方程组即得椭圆的标准方程;(2)设直线的方程为,线段的中点为,根据,得,解方程即得直线PQ的斜率.【题目详解】(1)因为椭圆离心率为,当P为C的短轴顶点时,的面积有最大值.所以,所以,故椭圆C的方程为:.(2)设直线的方程为,当时,代入,得:.设,线段的中点为,,即因为,则,所以,化简得,解得或,即直线的斜率为或.【题目点拨】本题主要考查椭圆标准方程的求法,考查直线和椭圆的位置关系,意在考查学生对这些知识的理解掌握水平和分析推理能力.18、(1);(2)【解题分析】
(1)将圆心极坐标转化为直角坐标,可得圆是以为圆心,半径为2的圆,写出标准方程,,再转化成极坐标方程即可(2)将代入可求得,再根据直线的参数方程进行消参,得到普通方程,再将普通方程转化为极坐标方程,算出,可求得答案【题目详解】解:(1)圆是以为圆心,半径为2的圆.其方程是,即,可得其极坐标方程为,即;(2)将代入得,直线的普通方程为,其极坐标方程是,将代入得,故.【题目点拨】对于圆的普通方程和参数方程及极坐标方程,应熟练掌握,平时应熟记四种极坐标方程及对应的普通方程:,做题时才能游刃有余,本题第二问巧妙地运用了极径来求解长度问题,体现了极坐标处理解析几何问题的优越性19、(1)分布列见解析.(2)分布列见解析;元.【解题分析】分析:(1)根据表格得到该超市水果日需求量(单位:千克)的分布列;(2)若A水果日需求量为140千克,则X=140×(15﹣10)﹣(150﹣140)×(10﹣8)=680元,则P(X=680)==0.1.若A水果日需求量不小于150千克,则X=150×(15﹣10)=750元,且P(X=750)=1﹣0.1=0.2.由此能求出X的分布列和数学期望E(X).详解:(1)的分布列为(2)若水果日需求量为千克,则元,且.若水果日需求量不小于千克,则元,且.故的分布列为元.点睛:求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是:“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率和公式、独立事件的概率积公式,以及对立事件的概率公式等),求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布X~B(n,p)),则此随机变量的期望可直接利用这种典型分布的期望公式(E(X)=np)求得.20、(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年西瓜买卖详细协议模板
- 2024年预付款垫资协议格式草案
- 地质勘查工作协议2024
- 二手房交易北京协议样式2024年
- 2024年精装地暖施工协议范本
- 2024年国内集装箱运输协议样本
- 2024商业地产续租协议范本
- 2024年度农产品专项采购协议样本
- 2024年学校周边商业租赁协议样本
- 2024年借款居间服务协议模板2
- 超声病例讨论.ppt
- 高中语文表现手法之烘托、渲染、衬托、对比的明显区别
- 箱式变电站交接试验报告
- 泰达时代中心楼顶发光字施工方案
- LED灯具规格书中英文
- 画直线和曲线说课稿
- 论我国农村集体土地所有制度的完善-
- 不等式基本性质
- BSP螺纹执行什么标准与英制G螺纹有何区别RpRc
- 初中体育课——立定跳远教案
- 人民大学大众汽车案例-4组
评论
0/150
提交评论