版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江西省赣州市红旗实验中学数学高二下期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某大型联欢会准备从含甲、乙的6个节目中选取4个进行演出,要求甲、乙2个节目中至少有一个参加,且若甲、乙同时参加,则他们演出顺序不能相邻,那么不同的演出顺序的种数为()A.720 B.520 C.600 D.2642.已知等比数列{an}中,,,则()A.±2 B.-2 C.2 D.43.2只猫把5只老鼠捉光,不同的捉法有()种.A. B. C. D.4.若,且,则()A. B. C. D.5.已知x,y满足不等式组则z="2x"+y的最大值与最小值的比值为A. B. C. D.26.已知是定义在上的函数,且对于任意,不等式恒成立,则整数的最小值为()A.1 B.2 C.3 D.47.已知某次数学考试的成绩服从正态分布,则114分以上的成绩所占的百分比为()(附,,)A. B. C. D.8.已知为非零不共线向量,设条件,条件对一切,不等式恒成立,则是的()A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件9.直线为参数被曲线所截的弦长为A. B. C. D.10.在200件产品中有3件次品,现从中任意抽取5件,其中至少有2件次品的抽法有()A.种 B.种 C.种 D.种11.若正数满足,则的最小值为()A.3 B.4 C.5 D.612.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种 B.216种 C.240种 D.288种二、填空题:本题共4小题,每小题5分,共20分。13.已知复数,且是实数,则实数__________.14.甲、乙、丙三名同学中只有一人考了满分,当他们被问到谁考了满分时,甲说:丙没有考满分;乙说:是我考的;丙说:甲说真话.事实证明:在这三名同学中,只有一人说的是假话,那么得满分的同学是_____.15.如果实数满足线性约束条件,则的最小值等于.16.已知平行六面体中,,,,,,则的长为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知.(1)求的解集;(2)设,求证:.18.(12分)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(I)求接受甲种心理暗示的志愿者中包含A1但不包含的频率。(II)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列与数学期望EX.19.(12分)求的二项展开式中的第5项的二项式系数和系数.20.(12分)已知矩阵对应的变换将点变换成.(1)求矩阵的逆矩阵;(2)求矩阵的特征向量.21.(12分)已知数列满足,,设,数列满足.(1)求证:数列为等差数列;(2)求数列的前项和.22.(10分)在四棱锥中,侧棱底面,底面是直角梯形,,,,,是棱上的一点(不与、点重合).(1)若平面,求的值;(2)求二面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
根据题意,分别讨论:甲、乙两节目只有一个参加,甲、乙两节目都参加,两种情况,分别计算,再求和,即可得出结果.【题目详解】若甲、乙两节目只有一个参加,则演出顺序的种数为:,若甲、乙两节目都参加,则演出顺序的种数为:;因此不同的演出顺序的种数为.故选:D.【题目点拨】本题主要考查有限制的排列问题,以及计数原理的简单应用,熟记计数原理的概念,以及有限制的排列问题的计算方法即可,属于常考题型.2、C【解题分析】
根据等比数列性质得,,再根据等比数列性质求得.【题目详解】因为等比数列中,,所以,即以,因此=,因为,同号,所以选C.【题目点拨】在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.3、B【解题分析】分析:利用乘法分步计数原理解决即可.详解:由于每只猫捉老鼠的数目不限,因此每一只老鼠都可能被这2只猫中其中一只捉住,由分步乘法计数原理,得共有不同的捉法有种.故选:B.点睛:(1)利用分步乘法计数原理解决问题要按事件发生的过程合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.(2)分步必须满足两个条件:一是步骤互相独立,互不干扰;二是步与步确保连续,逐步完成.4、D【解题分析】
先利用特殊值排除A,B,C,再根据组合数公式以及二项式定理论证D成立.【题目详解】令得,,在选择项中,令排除A,C;在选择项中,令,排除B,,故选D【题目点拨】本题考查组合数公式以及二项式定理应用,考查基本分析化简能力,属中档题.5、D【解题分析】
解:因为x,y满足不等式组,作出可行域,然后判定当过点(2,2)取得最大,过点(1,1)取得最小,比值为2,选D6、A【解题分析】
利用的单调性和奇偶性,将抽象不等式转化为具体不等式,然后将恒成立问题转化成最值问题,借助导数知识,即可解决问题.【题目详解】,可知,且单调递增,可以变为,即,∴,可知,设,则,当时,,当时,单调递增;当时,单调递减,可知,∴,∵,∴整数的最小值为1.故选A.【题目点拨】本题主要考查了函数的性质、抽象不等式的解法、以及恒成立问题的一般解法,意在考查学生综合运用所学知识的的能力.7、C【解题分析】分析:先求出u,,再根据和正态分布曲线求114分以上的成绩所占的百分比.详解:由题得u=102,因为,所以.故答案为:C.点睛:(1)本题主要考查正态分布曲线和概率的计算,意在考查学生对这些知识的掌握水平和数形结合思想方法.(2)利用正态分布曲线求概率时,要画图数形结合分析,不要死记硬背公式.8、C【解题分析】
条件M:条件N:对一切,不等式成立,化为:进而判断出结论.【题目详解】条件M:.
条件N:对一切,不等式成立,化为:.
因为,,,即,可知:由M推出N,反之也成立.
故选:C.【题目点拨】本题考查了向量数量积运算性质、充要条件的判定方法,考查了推理能力与计算能力,属于中档题.9、C【解题分析】
分析:先把参数方程和极坐标方程化为普通方程,并求出圆心到直线的距离,再利用关系:即可求出弦长.详解:直线为参数化为普通方程:直线.
∵曲线,展开为化为普通方程为,即,
∴圆心圆心C到直线距离,
∴直线被圆所截的弦长.
故选C.点睛:本题考查直线被圆截得弦长的求法,正确运用弦长l、圆心到直线的距离、半径r三者的关系:是解题的关键.10、D【解题分析】分析:据题意,“至少有2件次品”可分为“有2件次品”与“有3件次品”两种情况,由组合数公式分别求得两种情况下的抽法数,进而相加可得答案.详解:根据题意,“至少有2件次品”可分为“有2件次品”与“有3件次品”两种情况,“有2件次品”的抽取方法有C32C1973种,“有3件次品”的抽取方法有C33C1972种,则共有C32C1973+C33C1972种不同的抽取方法,故选:D.点睛:本题考查组合数公式的运用,解题时要注意“至少”“至多”“最多”“最少”等情况的分类讨论.11、B【解题分析】
先根据已知得出的符号及的值,再根据基本不等式求解.【题目详解】∵;∴∴∴当且仅当,即时,等号成立.故选B.【题目点拨】本题考查基本不等式,注意基本不等式成立的条件“一正二定三相等”.12、B【解题分析】分类讨论,最左端排甲;最左端只排乙,最右端不能排甲,根据加法原理可得结论.解:最左端排甲,共有=120种,最左端只排乙,最右端不能排甲,有=96种,根据加法原理可得,共有120+96=216种.故选B.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】复数z1=2+3i,z2=t−i,∴=t+i,∴=(2+3i)(t+i)=(2t−3)+(3t+2)i,由是实数,得3t+2=0,即.14、甲【解题分析】
分析题意只有一人说假话可知,假设只有甲说的是假话,即丙考满分,则乙也是假话,故假设不成立;假设只有乙说的是假话,则甲和丙说的都是真话,即乙没有得满分,丙没有得满分,故甲考满分.假设只有丙说的是假话,即甲和乙说的是真话,即丙说了真话,矛盾,故假设不成立.综上所述,得满分的是甲.15、【解题分析】试题分析:作出约束条件表示的可行域,如图内部(含边界),再作直线,上下平移直线,当过点时,取得最小值.考点:简单的线性规划.16、【解题分析】
可得,由数量积的运算可得,开方可得;【题目详解】如图所示:,故故的长等于.故答案为:【题目点拨】本题考查空间向量模的计算,选定为基底是解决问题的关键,属中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析.【解题分析】
(1)利用零点分段法,写出的分段函数形式,分类讨论求解即可(2)根据,,利用作差法即可求证【题目详解】(1)当时,由,得,解得,所以;当时,,成立;当时,由,得,解得,所以.综上,的解集.(2)证明:因为,所以,.所以,所以.【题目点拨】本题考查利用零点分段法解决绝对值不等式求解、利用作差法处理两式大小关系的证明18、(1)(2)见解析【解题分析】(I)记接受甲种心理暗示的志愿者中包含但不包含的事件为M,计算即得(II)由题意知X可取的值为:.利用超几何分布概率计算公式得X的分布列为X01234P进一步计算X的数学期望.试题解析:(I)记接受甲种心理暗示的志愿者中包含但不包含的事件为M,则(II)由题意知X可取的值为:.则因此X的分布列为X01234PX的数学期望是=【名师点睛】本题主要考查古典概型的概率公式和超几何分布概率计算公式、随机变量的分布列和数学期望.解答本题,首先要准确确定所研究对象的基本事件空间、基本事件个数,利用超几何分布的概率公式.本题属中等难度的题目,计算量不是很大,能很好的考查考生数学应用意识、基本运算求解能力等.19、二项式系数为,系数为.【解题分析】分析:根据二项式系数的展开式得到结果.详解:,二项式系数为,系数为.点睛:这个题目考查的是二项式中的特定项的系数问题,在做二项式的问题时,看清楚题目是求二项式系数还是系数,还要注意在求系数和时,是不是缺少首项;解决这类问题常用的方法有赋值法,求导后赋值,积分后赋值等.20、(1);(2)和.【解题分析】
(1)由题中点的变换得到,列方程组解出、的值,再利用逆矩阵变换求出;(2)求出矩阵的特征多项式,解出特征根,即可得出特征值和相应的特征向量.【题目详解】(1)由题意得,即,解得,,由于矩阵的逆矩阵为,因此,矩阵的逆矩阵为;(2)矩阵的特征多项式为,解特征方程,得或.①当时,由,得,即,可取,则,即属于的一个特征向量为;②当时,由,得,即,可取,则,即属于的一个特征向量为.综上,矩阵的特征向量为和.【题目点拨】本题考查矩阵的变换和逆矩阵的求法,考查矩阵的特征值和特征向量的求法,考查方程思想与运算能力,属于中等题.21、(1)详见解析(2)【解题分析】试题分析:(1)由可得,则数列为等比数列且公比为2.可得数列的通项公式.并将代入用对数的运算法则将其化简.再证为常数.(2)数列是一个等差数列乘以一个等比数列,用错位相减法求数列的前项和.试题解析:(1)由已知可得,,2分3分4分为等差数列,其中.6分(2)①7分②8分①-②得∴12分考点:1等比数列的定义和通项公式;2等差数列的定义和通项公式;3错位想减法求数列的和.【方法点睛】本题涉及等差数列,等比数列,以及求和的方法,属于基础题型,数列求和的方法主要包括:(1)分组求和法,把一个数列分成几个可以直接求和的数列和的形式;(2)裂项相消法:将数列写成的形式,包括,,等形式;(3)错位相减法:一个等差数列乘以一个等比数列的数列,采用错位相减法求和;(4)倒序相加法求和:如果一个数列与首末两项等距离的两项之和等于首末两项之和时,可采用倒序相加法;(5)其他法,形如型数列,可发现规律求和,或有些数列具有周期性,可利用函数的周期性求和.22、(1)(2)【解题分析】
(1)由平面可得,从而得到.(2)以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年鲁教版选修5历史上册月考试卷
- 2025年沪科版九年级历史上册阶段测试试卷含答案
- 2025年人教版高三历史上册阶段测试试卷含答案
- 2025年度新型门窗技术研发与承揽合同2篇
- 二零二五版美容美发行业美容院会员积分体系开发与运营合同4篇
- 二零二五年度进口奶粉批文申请及市场准入服务合同4篇
- 二零二五年度南京市房产局发布的房产抵押权转让合同样本4篇
- 2025年度智能门窗控制系统供应合同范本4篇
- 二零二五年度旅游服务业农民工劳动合同范本大全4篇
- 2025年度绿色生态面料生产加工合作合同4篇
- 疥疮病人的护理
- 人工智能算法与实践-第16章 LSTM神经网络
- 17个岗位安全操作规程手册
- 2025年山东省济南市第一中学高三下学期期末统一考试物理试题含解析
- 中学安全办2024-2025学年工作计划
- 网络安全保障服务方案(网络安全运维、重保服务)
- 2024年乡村振兴(产业、文化、生态)等实施战略知识考试题库与答案
- 现代科学技术概论智慧树知到期末考试答案章节答案2024年成都师范学院
- 软件模块化设计与开发标准与规范
- 2024年辽宁铁道职业技术学院高职单招(英语/数学/语文)笔试历年参考题库含答案解析
- 有机农业种植模式
评论
0/150
提交评论