2024届安徽省宣城市郎溪县七校高二数学第二学期期末经典试题含解析_第1页
2024届安徽省宣城市郎溪县七校高二数学第二学期期末经典试题含解析_第2页
2024届安徽省宣城市郎溪县七校高二数学第二学期期末经典试题含解析_第3页
2024届安徽省宣城市郎溪县七校高二数学第二学期期末经典试题含解析_第4页
2024届安徽省宣城市郎溪县七校高二数学第二学期期末经典试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届安徽省宣城市郎溪县七校高二数学第二学期期末经典试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,则,,的大小关系是()A. B.C. D.2.设抛物线的焦点与椭圆的右焦点重合,则该抛物线的准线方程为A. B. C. D.3.某运动队有男运动员4名,女运动员3名,若选派2人外出参加比赛,且至少有1名女运动员入选,则不同的选法共有()A.6种 B.12种 C.15种 D.21种4.已知具有线性相关关系的两个变量,的一组数据如下表:245682040607080根据上表,利用最小二乘法得到关于的线性回归方程为,则的值为()A.1 B.1.5 C.2 D.2.55.已知两变量x和y的一组观测值如下表所示:x234y546如果两变量线性相关,且线性回归方程为,则=()A.- B.-C. D.6.设,则()A. B.10 C. D.1007.某几何体的三视图如图所示,其中正视图和侧视图的上半部分均为半圆,下半部分为等腰直角三角形,则该几何体的表面积为()A. B. C. D.8.若命题:,,命题:,.则下列命题中是真命题的是()A. B. C. D.9.定义“规范01数列”如下:共有项,其中项为0,项为1,且对任意,,,…,中0的个数不少于1的个数.若,则不同的“规范01数列”共有()A.14个 B.13个 C.15个 D.12个10.在极坐标系中,圆的圆心的极坐标是()A. B. C. D.11.已知复数,则复数的虚部为()A. B. C. D.12.某校派出5名老师去海口市三所中学进行教学交流活动,每所中学至少派一名教师,则不同的分配方案有()A.80种 B.90种 C.120种 D.150种二、填空题:本题共4小题,每小题5分,共20分。13.已知直线,,若与平行,则实数的值为______.14.如图,在三棱柱中,底面,,,是的中点,则直线与所成角的余弦值为__________.15.若曲线经过T变换作用后纵坐标不变、横坐标变为原来的2倍,则T变换所对应的矩阵_____.16.5名学生站成一排拍照片,其中甲乙两名学生不相邻的站法有_______种.(结果用数值表示)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)选修4-4:坐标系与参数方程在直角坐标系中,已知点,直线(为参数),以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程是.(1)求曲线的直角坐标方程;(2)若直线与曲线的交点为,求的值.18.(12分)已知函数,曲线在点处的切线方程为.(1)求的值;(2)求在上的最大值.19.(12分)近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重.大气污染可引起心悸、呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机的对入院50人进行了问卷调查得到了如表所示的列联表:已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为.(1)请将列联表补充完整;患心肺疾病不患心肺疾病合计男5女10合计50(2)是否有97.5%的把握认为患心肺疾病与性别有关?说明你的理由;(3)已知在患心肺疾病的10位女性中,有3位又患胃病.现在从患心肺疾病的10位女性中,选出3名进行其他方面的排查,记选出患胃病的女性人数为,求的分布列以及数学期望.下面的临界值表供参考:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828(参考公式,其中)20.(12分)选修4-4:坐标系与参数方程已知在直角坐标系中,直线的参数方程为,(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程和曲线的直角坐标方程;(2)设点是曲线上的一个动点,求它到直线的距离的取值范围.21.(12分)2021年,广东省将实施新高考,2018年暑期入学的高一学生是新高考首批考生,新高考不再分文理科,采用模式,其中“3”是指语文、数学、外语;“1”是指在物理和历史中必选一科(且只能选一科);“2”是指在化学,生物,政治,地理四科中任选两科.为积极推进新高考,某中学将选科分为两个环节,第一环节:学生在物理和历史两科中选择一科;第二环节:学生在化学,生物,政治,地理四科中任选两科.若一个学生两个环节的选科都确定,则称该学生的选考方案确定;否则,称该学生选考方案待确定.该学校为了解高一年级1000名学生选考科目的意向,随机选取50名学生进行了一次调查,这50人第一环节的选考科目都确定,有32人选物理,18人选历史;第二环节的选考科目已确定的有30人,待确定的有20人,具体调查结果如下表:选考方案确定情况化学生物政治地理物理选考方案确定的有18人161154选考方案待确定的有14人5500历史选考方案确定的有12人35412选考方案待确定的有6人0032(1)估计该学校高一年级选考方案确定的学生中选考政治的学生有多少人?(2)从选考方案确定的12名历史选考生中随机选出2名学生,设随机变量,求的分布列及数学期望.(3)在选考方案确定的18名物理选考生中,有11名学生选考方案为物理、化学、生物,试问剩余7人中选考方案为物理、政治、地理的人数.(只需写出结果)22.(10分)已知抛物线C:=2px(p>0)的准线方程为x=-,F为抛物线的焦点(I)求抛物线C的方程;(II)若P是抛物线C上一点,点A的坐标为(,2),求的最小值;(III)若过点F且斜率为1的直线与抛物线C交于M,N两点,求线段MN的中点坐标.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

先根据来分段,然后根据指数函数性质,比较出的大小关系.【题目详解】由于,而,故,所以选A.【题目点拨】本小题主要考查指数函数的单调性,考查对数函数的性质,考查比较大小的方法,属于基础题.2、D【解题分析】分析:椭圆的右焦点为,抛物线的焦点坐标为,求解,再得出准线方程.详解:椭圆的右焦点为,抛物线的焦点坐标为,解得,得出准线方程点睛:抛物线的焦点坐标为,准线方程3、C【解题分析】

先求出所有的方法数,再求出没有女生入选的方法数,相减可得至少有1位女生入选的方法数.【题目详解】解:从3位女生,4位男生中选2人参加比赛,所有的方法有种,

其中没有女生入选的方法有种,

故至少有1位女生入选的方法有21−6=15种.

故选:C.【题目点拨】本题主要考查排列组合的简单应用,属于中档题.4、B【解题分析】

回归直线经过样本中心点.【题目详解】样本中心点为,因为回归直线经过样本中心点,所以,.故选B.【题目点拨】本题考查回归直线的性质.5、D【解题分析】

先计算==3,==5,代入方程即可.【题目详解】==3,==5,代入线性回归方程可得5=3+,解之得=.故选D【题目点拨】线性回归直线必过样本中心.6、B【解题分析】

利用复数的除法运算化简为的形式,然后求得的表达式,进而求得.【题目详解】,,.故选B.【题目点拨】本小题主要考查复数的除法运算,考查复数的平方和模的运算,属于基础题.7、A【解题分析】

根据三视图知:几何体为半球和圆柱和圆锥的组合体,计算表面积得到答案.【题目详解】根据三视图知:几何体为半球和圆柱和圆锥的组合体..故选:.【题目点拨】本题考查了根据三视图求表面积,意在考查学生的计算能力和空间想象能力.8、C【解题分析】

先判断命题p和q的真假,再判断选项得解.【题目详解】对于命题p,,所以命题p是假命题,所以是真命题;对于命题q,,,是真命题.所以是真命题.故选:C【题目点拨】本题主要考查复合命题的真假的判断,考查全称命题和特称命题的真假的判断,意在考查学生对这些知识的理解掌握水平和分析推理能力.9、A【解题分析】分析:由新定义可得,“规范01数列”有偶数项2m项,且所含0与1的个数相等,首项为0,末项为1,当m=4时,数列中有四个0和四个1,然后一一列举得答案.详解:由题意可知,“规范01数列”有偶数项2m项,且所含0与1的个数相等,首项为0,末项为1,若m=4,说明数列有8项,满足条件的数列有:0,0,0,0,1,1,1,1;0,0,0,1,0,1,1,1;0,0,0,1,1,0,1,1;0,0,0,1,1,1,0,1;0,0,1,0,0,1,1,1;0,0,1,0,1,0,1,1;0,0,1,0,1,1,0,1;0,0,1,1,0,1,0,1;0,0,1,1,0,0,1,1;0,1,0,0,0,1,1,1;0,1,0,0,1,0,1,1;0,1,0,0,1,1,0,1;0,1,0,1,0,0,1,1;0,1,0,1,0,1,0,1.共14个.故答案为:A.点睛:本题是新定义题,考查数列的应用,关键是对题意的理解,枚举时做到不重不漏.10、B【解题分析】

先把圆的极坐标方程化为直角坐标方程,确定其圆心的直角坐标再化成极坐标即可.【题目详解】圆化为,,配方为,因此圆心直角坐标为,可得圆心的极坐标为故选B【题目点拨】本题考查极坐标方程与直角坐标方程的转化,点的直角坐标与极坐标的转化,比较基础.11、C【解题分析】分析:由复数的乘除法法则计算出复数,再由定义可得.详解:,虚部为.故选C.点睛:本题考查的运算复数的概念,解题时根据复数运算法则化复数为简单形式,可得虚部与实部.12、D【解题分析】

不同的分配方案有(C二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

根据两直线平行,列出有关的等式和不等式,即可求出实数的值.【题目详解】由于与平行,则,即,解得.故答案为:.【题目点拨】本题考查利用两直线平行求参数,解题时要熟悉两直线平行的等价条件,并根据条件列式求解,考查运算求解能力,属于基础题.14、【解题分析】分析:记中点为E,则,则直线与所成角即为与所成角,设,从而即可计算.详解:记中点为E,并连接,是的中点,则,直线与所成角即为与所成角,设,,.故答案为.点睛:(1)求异面直线所成的角常用方法是平移法,平移的方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移.(2)求异面直线所成的角的三步曲:即“一作、二证、三求”.其中空间选点任意,但要灵活,经常选择“端点、中点、等分点”,通过作三角形的中位线,平行四边形等进行平移,作出异面直线所成的角,转化为解三角形问题,进而求解.15、【解题分析】

根据伸缩变换性质即可得出【题目详解】设在这个伸缩变换下,直角坐标系内任意一点对应到点则从而对应的二阶矩阵【题目点拨】本题主要考查了伸缩变换对应矩阵,属于基础题.16、72【解题分析】

首先对除甲乙外的三名同学全排列,再加甲乙插空排入,根据分步乘法计数原理可得到结果.【题目详解】将除甲乙外的三名同学全排列,共有:种排法甲、乙插空排入,共有:种排法根据分步乘法计数原理可得排法共有:种排法本题正确结果:【题目点拨】本题考查排列问题中的不相邻问题的求解,关键是明确解决不相邻的问题可采用插空的方式来进行求解.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】分析:(1)直接代极坐标公式得到曲线的直角坐标方程.(2)把直线的参数方程代入,得,再利用直线参数方程t的几何意义解答.详解:(1)对于曲线,两边同乘以可得,即,所以它的直角坐标方程为.(2)把直线的参数方程代入,得,所以,因为点在直线上,所以,因为,所以,所以.点睛:(1)本题主要考查极坐标和直角坐标的互化,考查直线参数方程t的几何意义,意在考查学生对这些知识的掌握水平和基本运算能力.(2)过定点、倾斜角为的直线的参数方程(为参数).当动点在定点上方时,.当动点在定点下方时,.18、(1),;(2)1【解题分析】

(1)依题意,由,得到,再由,得到,联立方程组,即可求解;(2)由(1),求得,利用导数求得函数的单调性与极值,即可求得函数的最大值,得到答案.【题目详解】(1)依题意可知点为切点,代入切线方程可得,,所以,即,又由,则,而由切线的斜率可知,∴,即,由,解得,∴,.(2)由(1)知,则,令,得或,当变化时,,的变化情况如下表:-3-21+0-0+8↗极大值↘极小值↗4∴的极大值为,极小值为,又,,所以函数在上的最大值为1.【题目点拨】本题主要考查了利用导数的几何意义求解参数问题,以及利用导数求解函数的单调性与最值问题,其中解答中熟记导函数与原函数的单调性与极值(最值)之间的关系是解答的关键,着重考查了推理与运算能力.19、(1)见解析(2)有97.5%的把握认为患心肺疾病与性别有关.(3)见解析,【解题分析】

(1)由题意可知:在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为,即可求得患心肺疾病的为20人,即可完成列联表;(2)再代入公式计算得出,与5.024比较即可得出结论;(3)在患心肺疾病的10位女性中,有3位又患有胃病,记选出患胃病的女性人数为,则服从超几何分布,即可得到的分布列和数学期望.【题目详解】解:(1)列联表补充如表所示患心肺疾病不患心肺疾病合计男10515女102535合计203050(2)∵∴∵∴有97.5%的把握认为患心肺疾病与性别有关.(3)根据题意,的值可能为0,1,2,3,,,,分布列如表:0123则【题目点拨】本题考查独立性检验的应用问题,考查随机变量得分布列和数学期望,考查学生的计算能力,考查学生分析解决问题的能力,属于中档题.20、(1),;(2).【解题分析】分析:(1)消去参数可以求出直线的普通方程,由,,能求出曲线的直角坐标方程;(2)设动点坐标,利用点到直线距离公式和三角函数的辅助角公式,确定距离的取值范围.详解:解:(1)消去参数整理得,直线的普通方程为:;将,,代入曲线的极坐标方程.曲线的直角坐标方程为(2)设点,则所以的取值范围是.分析:本题考查参数方程化普通方程,极坐标方程化直角坐标方程,同时考查圆上的一点到直线距离的最值,直线与圆相离情况下,也可以通过圆心到直线距离与半径的关系表示,即距离最大值,距离最小值.21、(1)180;(1);(3)1人.【解题分析】

(1)利用分层抽样原

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论