2024届江西省赣州市南康中学数学高二第二学期期末预测试题含解析_第1页
2024届江西省赣州市南康中学数学高二第二学期期末预测试题含解析_第2页
2024届江西省赣州市南康中学数学高二第二学期期末预测试题含解析_第3页
2024届江西省赣州市南康中学数学高二第二学期期末预测试题含解析_第4页
2024届江西省赣州市南康中学数学高二第二学期期末预测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江西省赣州市南康中学数学高二第二学期期末预测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中,为边上一点,且,向量与向量共线,若,,,则()A.3 B. C.2 D.2.设函数满足:,,则时,()A.有极大值,无极小值 B.有极小值,无极大值C.既有极大值,又有极小值 D.既无极大值,又无极小值3.设,则的展开式中的常数项为()A. B. C. D.4.命题;命题.若为假命题,为真命题,则实数的取值范围是()A. B.或C.或 D.或5.若直线(t为参数)与直线垂直,则常数k=()A. B.6 C.6 D.6.某所学校在一个学期的开支分布的饼图如图1所示,在该学期的水、电、交通开支(单位:万元)如图2所示,则该学期的电费开支占总开支的百分比为().A. B. C. D.7.定义“规范01数列”{an}如下:{an}共有2m项,其中m项为0,m项为1,且对任意,中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有A.18个 B.16个C.14个 D.12个8.某单位为了解用电量(度)与气温(℃)之间的关系,随机统计了某天的用电量与当天气温,并制作了统计表:由表中数据得到线性回归方程,那么表中的值为()气温(℃)181310-1用电量(度)243464A. B. C. D.9.某几何体的三视图如图所示,则该几何体的体积(单位:)是()A. B. C. D.10.证明等式时,某学生的证明过程如下(1)当n=1时,,等式成立;(2)假设时,等式成立,即,则当时,,所以当时,等式也成立,故原式成立.那么上述证明()A.过程全都正确 B.当n=1时验证不正确C.归纳假设不正确 D.从到的推理不正确11.一个圆锥被过其顶点的一个平面截去了较少的一部分几何体,余下的几何体的三视图如图,则余下部分的几何体的体积为()A. B. C. D.12.某市某校在秋季运动会中,安排了篮球投篮比赛.现有20名同学参加篮球投篮比赛,已知每名同学投进的概率均为0.4,每名同学有2次投篮机会,且各同学投篮之间没有影响.现规定:投进两个得4分,投进一个得2分,一个未进得0分,则其中一名同学得2分的概率为()A.0.5 B.0.48 C.0.4 D.0.32二、填空题:本题共4小题,每小题5分,共20分。13.已知定义在上的函数在导函数为,若,且当时,,则满足不等式的实数的取值范围是__________.14.已知数据的方差为1,则数据的方差为____.15.已知为抛物线的焦点,为其标准线与轴的交点,过的直线交抛物线于,两点,为线段的中点,且,则__________.16.已知函数f(x)=kx3+3(k-1)x2-k2+1(k>0)在(0,4)上是减函数,则实数k的取值范围是____________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)为了了解甲、乙两校学生自主招生通过情况,从甲校抽取51人,从乙校抽取41人进行分析.通过人数末通过人数总计甲校乙校31总计51(1)根据题目条件完成上面2×2列联表,并据此判断是否有99%的把握认为自主招生通过情况与学生所在学校有关;(2)现已知甲校A,B,C三人在某大学自主招生中通过的概率分别为,用随机变量X表示A,B,C三人在该大学自主招生中通过的人数,求X的分布列及期望E(X).参考公式:.参考数据:1.141.111.141.1241.111.1141.1112.1622.6153.8414.1245.5346.86911.82818.(12分)已经函数.(1)讨论函数的单调区间;(2)若函数在处取得极值,对恒成立,求实数的取值范围.19.(12分)已知函数(e为自然对数的底数).(Ⅰ)当时,求函数的单调区间;(Ⅱ)若对于任意,不等式恒成立,求实数t的取值范围.20.(12分)已知公差不为的等差数列的前项和,,,成等差数列,且,,成等比数列.(1)求数列的通项公式;(2)若,,成等比数列,求及此等比数列的公比.21.(12分)如图,已知,分别为椭圆:的上、下焦点,是抛物线:的焦点,点是与在第二象限的交点,且.(1)求椭圆的方程;(2)与圆相切的直线:(其中)交椭圆于点,,若椭圆上一点满足,求实数的取值范围.22.(10分)已知函数.(1)讨论的单调性;(2)当时,,求的最大整数值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】取BC的中点E,则与向量共线,所以A、D、E三点共线,即中边上的中线与高线重合,则.因为,所以G为的重心,则所以本题选择B选项.2、B【解题分析】

首先构造函数,由已知得,从而有,令,求得,这样可确定是增函数,由可得的正负,确定的单调性与极值.【题目详解】,令,则,所以,令,则,即,当时,,单调递增,而,所以当时,,,单调递减;当时,,,单调递增;故有极小值,无极大值,故选B.【题目点拨】本题考查用导数研究函数的极值,解题关键是构造新函数,,求导后表示出,然后再一次令,确定单调性,确定正负,得出结论.3、B【解题分析】

利用定积分的知识求解出,从而可列出展开式的通项,由求得,代入通项公式求得常数项.【题目详解】展开式通项公式为:令,解得:,即常数项为:本题正确选项:【题目点拨】本题考查二项式定理中的指定项系数的求解问题,涉及到简单的定积分的求解,关键是能够熟练掌握二项展开式的通项公式的形式.4、B【解题分析】

首先解出两个命题的不等式,由为假命题,为真命题得命题和命题一真一假.【题目详解】命题,命题.因为为假命题,为真命题.所以命题和命题一真一假,所以或,选择B【题目点拨】本题主要考查了简易逻辑的问题,其中涉及到了不等式以及命题真假的判断问题,属于基础题.5、B【解题分析】

由参数方程直接求出斜率,表示出另一直线的斜率,利用垂直的直线斜率互为负倒数即可求出参数k.【题目详解】由参数方程可求得直线斜率为:,另一直线斜率为:,由直线垂直可得:,解得:.故选B.【题目点拨】本题考查参数方程求斜率与直线的位置关系,垂直问题一般有两个方法:一是利用斜率相乘为-1,另一种是利用向量相乘得0.6、B【解题分析】

结合图表,通过计算可得:该学期的电费开支占总开支的百分比为×20%=11.25%,得解.【题目详解】由图1,图2可知:该学期的电费开支占总开支的百分比为×20%=11.25%,故选B.【题目点拨】本题考查了识图能力及进行简单的合情推理,属简单题.7、C【解题分析】

试题分析:由题意,得必有,,则具体的排法列表如下:,01010011;010101011,共14个【题目点拨】求解计数问题时,如果遇到情况较为复杂,即分类较多,标准也较多,同时所求计数的结果不太大时,往往利用表格法、树状图将其所有可能一一列举出来,常常会达到岀奇制胜的效果.8、C【解题分析】

由表中数据计算可得样本中心点,根据回归方程经过样本中心点,代入即可求得的值.【题目详解】由表格可知,,根据回归直线经过样本中心点,代入回归方程可得,解得,故选:C.【题目点拨】本题考查了线性回归方程的简单应用,由回归方程求数据中的参数,属于基础题.9、A【解题分析】由三视图可知,该几何体是半个圆柱和以圆柱轴截面为底面的四棱锥组成的组合体,其中半圆柱底面半径为,高为,体积为,四棱锥体积为,所以该几何体体积为,故选A.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.10、A【解题分析】分析:由题意结合数学归纳法的证明方法考查所给的证明过程是否存在错误即可.详解:考查所给的证明过程:当时验证是正确的,归纳假设是正确的,从到的推理也是正确的,即证明过程中不存在任何的问题.本题选择A选项.点睛:本题主要考查数学归纳法的概念及其应用,意在考查学生的转化能力和计算求解能力.11、B【解题分析】分析:由三视图求出圆锥母线,高,底面半径.进而求出锥体的底面积,代入锥体体积公式,可得答案.详解:由已知中的三视图,圆锥母线l=圆锥的高h=,圆锥底面半径为r==2,由题得截去的底面弧的圆心角为120°,底面剩余部分为S=πr2+sin120°=π+,故几何体的体积为:V=Sh=×(π+)×2=.故答案为:B.点睛:(1)本题主要考查三视图找原图,考查空间几何体的体积的计算,意在考查学生对这些知识的掌握水平和空间想象能力基本的计算能力.(2)解答本题的关键是弄清几何体的结构特征并准确计算各几何要素.12、B【解题分析】

事件“第一次投进球”和“第二次投进球”是相互独立的,利用对立事件和相互独立事件可求“其中一名同学得2分”的概率.【题目详解】设“第一次投进球”为事件,“第二次投进球”为事件,则得2分的概率为.故选B.【题目点拨】本题考查对立事件、相互独立事件,注意互斥事件、对立事件和独立事件三者之间的区别,互斥事件指不同时发生的事件,对立事件指不同时发生的事件且必有一个发生的两个事件,而独立事件指一个事件的发生与否与另一个事件没有关系.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】分析:根据条件得到函数的对称性,结合函数的单调性和导数之间的关系判断函数的单调性,利用特殊值法进行求解即可.详解:由,得函数关于对称,当时,,即在上单调递减,不妨设,则不等式等价为,即,即,得,故实数的取值范围是.故答案为:.点睛:本题主要考查不等式的求解,利用条件判断函数的对称性和单调性,利用特殊值法是解决本题的关键.14、9【解题分析】

根据方差的线性变化公式计算:方差为,则的方差为.【题目详解】因为方差为,则的方差为,【题目点拨】本题考查方差的线性变化,难度较易.如果已知方差为,则的方差为,这可用于简便计算方差.15、8.【解题分析】分析:求得抛物线的焦点和准线方程,可得E的坐标,设过F的直线为y=k(x-1),代入抛物线方程y2=4x,运用韦达定理和中点坐标公式,可得M的坐标,运用两点的距离公式可得k,再由抛物线的焦点弦公式,计算可得所求值.详解:F(1,0)为抛物线C:y2=4x的焦点,

E(-1,0)为其准线与x轴的交点,

设过F的直线为y=k(x-1),

代入抛物线方程y2=4x,可得

k2x2-(2k2+4)x+k2=0,

设A(x1,y1),B(x2,y2),则中点解得k2=1,则x1+x2=6,由抛物线的定义可得|AB|=x1+x2+2=8,故答案为8.点睛:本题考查抛物线的定义、方程和性质,考查联立直线方程和抛物线的方程,运用韦达定理和中点坐标公式,考查运算能力,属于中档题.16、.【解题分析】分析:先求导,再根据导函数零点分布确定不等式,解不等式得结果.详解:因为,所以因为函数f(x)=kx3+3(k-1)x2-k2+1(k>0)在(0,4)上是减函数,所以点睛:函数单调性问题,往往转化为导函数符号是否变号或怎样变号问题,即转化为方程或不等式解的问题(有解,恒成立,无解等),而不等式有解或恒成立问题,又可通过适当的变量分离转化为对应函数最值问题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)填表见解析,有99%的把握认为学生的自主招生通过情况与所在学校有关(2)见解析【解题分析】

(1)根据题中信息完善列联表,并计算出的观测值,结合临界值表找出犯错误的概率,于此可对题中的结论正误进行判断;(2)列出随机变量的可能取值,利用独立事件的概率乘法公式计算出随机变量在每个可能值处的概率,可列出随机变量的概率分布列,并由此计算出随机变量的数学期望.【题目详解】(1)列联表如下:通过人数未通过人数总计甲校214151乙校312141总计4151111由算得:,所以有99%的把握认为学生的自主招生通过情况与所在学校有关;(2)设自主招生通过分别记为事件,则.∴随机变量的可能取值为1,1,2,3.,,,.所以随机变量X的分布列为:.【题目点拨】本题考查独立性检验的基本思想,考查随机变量分布列及其数学期望的求解,解题时要判断出随机变量所服从的分布列,结合分布列类型利用相关公式计算出相应的概率,考查计算能力,属于中等题.18、(1)①当时,的递减区间是,无递增区间;②当时,的递增区间是,递减区间是.(2).【解题分析】

分析:(Ⅰ)求出导函数,由于定义域是,可按和分类讨论的正负,得单调区间.(Ⅱ)由函数在处取极值得且可得的具体数值,而不等式可转化为,这样只要求得的最小值即可.详解:(Ⅰ)在区间上,.①若,则,是区间上的减函数;②若,令得.在区间上,,函数是减函数;在区间上,,函数是增函数;综上所述,①当时,的递减区间是,无递增区间;②当时,的递增区间是,递减区间是.(II)因为函数在处取得极值,所以解得,经检验满足题意.由已知,则令,则易得在上递减,在上递增,所以,即.点睛:本题考查用导数求函数的单调区间、函数极值,用导数研究不等式恒成立问题.不等式恒成立通常通过分离参数法转化为求函数的最值.19、(1)函数的单调递增区间是;单调递减区间是(2).【解题分析】试题分析:(1),根据题意,由于函数当t=-e时,即导数为,,函数的单调递增区间是;单调递减区间是(2)根据题意由于对于任意,不等式恒成立,则在第一问的基础上,由于函数,只要求解函数的最小值大于零即可,由于当t>0,函数子啊R递增,没有最小值,当t<0,那么可知,那么在给定的区间上可知当x=ln(-t)时取得最小值为2,那么可知t的取值范围是.考点:导数的运用点评:主要是考查了导数的运用,以及函数最值的运用,属于中档题.20、(1);(2),公比.【解题分析】试题分析:(1)由题意得到关于首项、公差的方程,解方程可得,则数列的通项公式为;(2)由(1)知,则,,结合等比数列的性质可得,公比.试题解析:(1)设数列的公差为由题意可知,整理得,即,所以;(2)由(1)知,∴,∴,,又,∴,∴,公比.21、(1);(2).【解题分析】试题分析:(1)由题意得,所以,又由抛物线定义可知,,由椭圆定义知,,得,故,从而椭圆的方程为;(2),,联立得,代入椭圆方程,所以,又,所以.试题解析:(1)由题意得,所以,又由抛物线定义可知,得,于是易知,从而,由椭圆定义知,,得,故,从而椭圆的方程为.(2)设,,,则由知,,,且,①又直线:(其中)与圆相切,所以有,由,可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论