




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省湖州市八校联盟2024届数学高二下期末教学质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知复数满足,则()A. B. C. D.2.已知某随机变量服从正态分布,且,则()A. B. C. D.3.某校派出5名老师去海口市三所中学进行教学交流活动,每所中学至少派一名教师,则不同的分配方案有()A.80种 B.90种 C.120种 D.150种4.已知(为虚数单位),则A. B. C. D.5.的展开式中,的系数为()A.2 B.4 C.6 D.86.已知,则满足成立的取值范围是()A. B.C. D.7.若,则“成等比数列”是“”的()A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件8.为了落实中央提出的精准扶贫政策,永济市人力资源和社会保障局派人到开张镇石桥村包扶户贫困户,要求每户都有且只有人包扶,每人至少包扶户,则不同的包扶方案种数为()A. B. C. D.9.设,则的值为()A. B.1 C.0 D.-110.如图,F1,F2分别是双曲线(a>0,b>0)的两个焦点,以坐标原点O为圆心,|OF1|为半径的圆与该双曲线左支交于A,B两点,若△F2AB是等边三角形,则双曲线的离心率为()A. B.2C. D.11.双曲线x2a2A.y=±2x B.y=±3x12.甲乙两队进行排球比赛,已知在一局比赛中甲队获胜的概率是23A.2027B.49C.8二、填空题:本题共4小题,每小题5分,共20分。13.若圆柱的轴截面面积为2,则其侧面积为___;14.圆的圆心到直线的距离__________.15.已知函数f(x)=kx3+3(k-1)x2-k2+1(k>0)在(0,4)上是减函数,则实数k的取值范围是____________16.为了宣传校园文化,让更多的学生感受到校园之美,某校学生会组织了6个小队在校园最具有代表性的3个地点进行视频拍摄,若每个地点至少有1支小队拍摄,则不同的分配方法有_____种(用数字作答)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图所示圆锥中,为底面圆的两条直径,,且,,为的中点.求:(1)该圆锥的表面积;(2)异面直线与所成的角的大小(结果用反三角函数值表示).18.(12分)已知数列中,,.(1)写出的值,猜想数列的通项公式;(2)用数学归纳法证明(1)中你的结论.19.(12分)已知函数f(x)=xex(1)求函数f(x)的极值.(2)若f(x)﹣lnx﹣mx≥1恒成立,求实数m的取值范围.20.(12分)如图,在四棱锥中,平面平面,,,,,,.(1)求直线与平面所成角的正弦值.(2)在棱上是否存在点,使得平面?若存在,求的值;若不存在,说明理由.21.(12分)已知,,曲线在点处的切线平分圆C:的周长.(1)求a的值;(2)讨论函数的图象与直线的交点个数.22.(10分)甲、乙两人做定点投篮游戏,已知甲每次投篮命中的概率均为,乙每次投篮命中的概率均为,甲投篮3次均未命中的概率为,甲、乙每次投篮是否命中相互之间没有影响.(Ⅰ)若甲投篮3次,求至少命中2次的概率;(Ⅱ)若甲、乙各投篮2次,设两人命中的总次数为,求的分布列和数学期望.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
,,故选C.2、A【解题分析】
直接利用正态分布曲线的对称性求解.【题目详解】,且,..故选:A.【题目点拨】本题考查正态分布曲线的特点及曲线所表示的意义,考查正态分布中两个量和的应用,考查曲线的对称性,属于基础题.3、D【解题分析】
不同的分配方案有(C4、B【解题分析】
由题得,再利用复数的除法计算得解.【题目详解】由题得,故答案为:B【题目点拨】本题主要考查复数的运算,意在考查学生对该知识的掌握水平和分析推理计算能力.5、D【解题分析】
由题意得到二项展开式的通项,进而可得出结果.【题目详解】因为的展开式的第项为,令,则,所以的系数为8.故选D【题目点拨】本题主要考查求指定项的系数问题,熟记二项式定理即可,属于常考题型.6、B【解题分析】由题意,函数,满足,所以函数为偶函数,且当时,函数单调递增,当时,函数单调递减,又,所以,解得或,故选B.7、B【解题分析】分析:根据等比数列的定义和等比数列的性质,即可判定得到结论.详解:由题意得,例如,此时构成等比数列,而不成立,反之当时,若,则,所以构成等比数列,所以当时,构成等比数列是构成的等比数列的必要不充分条件,故选B.点睛:本题主要考查了等比数列的定义和等比数列的性质,其中熟记等比数列的性质和等比数列的定义的应用是解答的关键,着重考查了推理与论证能力.8、C【解题分析】
先分组再排序,可得知这人所包扶的户数分别为、、或、、,然后利用分步计数原理可得出所求方案的数目.【题目详解】由题意可知,这人所包扶的户数分别为、、或、、,利用分步计数原理知,不同的包扶方案种数为,故选C.【题目点拨】本题考查排列组合的综合问题,考查分配问题,求解这类问题遵循先分组再排序的原则,再分组时,要注意平均分组的问题,同时注意分步计数原理的应用,考查分析问题和解决问题的能力,属于中等题.9、C【解题分析】
首先采用赋值法,令,代入求值,通分后即得结果.【题目详解】令,,,.故选:C【题目点拨】本题考查二项式定理和二项式系数的性质,涉及系数和的时候可以采用赋值法求和,本题意在考查化归转化和计算求解能力,属于中档题型.10、D【解题分析】
连接,利用三角形边之间的关系得到,,代入离心率公式得到答案.【题目详解】连接,依题意知:,,所以.【题目点拨】本题考查了双曲线的离心率,利用三角形边之间的关系和双曲线性质得到的关系式是解题的关键.11、A【解题分析】分析:根据离心率得a,c关系,进而得a,b关系,再根据双曲线方程求渐近线方程,得结果.详解:∵e=因为渐近线方程为y=±bax点睛:已知双曲线方程x2a212、A【解题分析】试题分析:“甲队获胜”包括两种情况,一是2:0获胜,二是2:1获胜.根据题意若是甲队2:0获胜,则比赛只有2局,其概率为(23)2=49;若是甲队2:1获胜,则比赛3局,其中第3考点:相互独立事件的概率及n次独立重复试验.【方法点晴】本题主要考查了相互独立事件的概率及n次独立重复试验,属于中档题.本题解答的关键是读懂比赛的规则,尤其是根据“采用三局两胜制比赛,即先胜两局者获胜且比赛结束”把整个比赛所有的可能情况分成两类,甲队以2:0获胜或2:1获胜,据此分析整个比赛过程中的每一局的比赛结果,根据相互独立事件的概率乘法公式及n次独立重复试验概率公式求得每种情况的概率再由互斥事件的概率加法公式求得答案.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
根据题意得圆柱的轴截面为底边为,高为的矩形,根据几何性质即可求解。【题目详解】设圆柱的底面圆半径为,高为,由题意知,圆柱的轴截面为底边为,高为的矩形,所以,即。所以侧面积。【题目点拨】本题考查圆柱的几何性质,表面积的求法,属基础题14、1【解题分析】
由题意首先确定圆心坐标,然后利用点到直线距离公式可得圆心到直线的距离.【题目详解】圆的方程即:,则圆心坐标为,圆心到直线的距离.故答案为:1.【题目点拨】本题主要考查由圆的方程确定圆心的方法,点到直线距离公式的应用等知识,意在考查学生的转化能力和计算求解能力.15、.【解题分析】分析:先求导,再根据导函数零点分布确定不等式,解不等式得结果.详解:因为,所以因为函数f(x)=kx3+3(k-1)x2-k2+1(k>0)在(0,4)上是减函数,所以点睛:函数单调性问题,往往转化为导函数符号是否变号或怎样变号问题,即转化为方程或不等式解的问题(有解,恒成立,无解等),而不等式有解或恒成立问题,又可通过适当的变量分离转化为对应函数最值问题.16、540【解题分析】
首先将6个小队分成三组,有三种组合,然后再分配,即可求出结果.【题目详解】(1)若按照进行分配有种方案;(2)若按照进行分配有种方案;(3)若按照进行分配有种方案;由分类加法原理,所以共有种分配方案.【题目点拨】本题主要考查分类加法计数原理,以及排列组合的相关知识应用.易错点是平均分配有重复,注意消除重复.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】
(1)先计算出圆锥的母线长度,然后计算出圆锥的侧面积和底面积,即可计算出圆锥的表面积;(2)连接,根据位置关系可知异面直线与所成的角即为或其补角,根据线段长度即可计算出的值,即可求解出异面直线所成角的大小.【题目详解】(1)因为,所以,所以圆锥的侧面积为:,圆锥的底面积为:,所以圆锥的表面积为:;(2)连接,如下图所示:因为为的中点,为的中点,所以且,所以异面直线与所成的角即为或其补角,因为,,,所以平面,因为平面,所以,所以,所以异面直线与所成的角的大小为:.【题目点拨】本题考查圆锥的表面积计算以及异面直线所成角的求解,难度较易.(1)圆锥的表面积包含两部分:侧面积、底面积;(2)求解异面直线所成角的几何方法:将直线平移至同一平面内,即可得到异面直线所成角或其补角,然后根据线段长度即可求解出对应角的大小.18、(1),,,猜想(2)见解析【解题分析】
(1)依递推公式计算,并把各分子都化为3,可归纳出;(2)用数学归纳法证明即可.【题目详解】解:(1),,∴,,,猜想(2)用数学归纳法证明如下:①当时,由知猜想成立;②假设时,猜想成立,即则∴时,猜想成立,根据①②可知,猜想对一切正整数都成立.【题目点拨】本题考查归纳推理,考查数学归纳法,属于基础题.在用数学归纳法证明时,在证明时的命题时一定要用到时的归纳假设,否则不是数学归纳法.19、(1)极小值.无极大值;(2)【解题分析】
(1)利用导数可得函数在上单调递减,在上单调递增,即可得到函数的极值;(2)由题意得恒成立,即恒成立,设,求得函数的导数,得到函数在有唯一零点,进而得到函数最小值,得到的取值范围.【题目详解】(1)由题意,函数的定义域为,则因为,所以,函数在上单调递减,在上单调递增;函数在处取得极小值.无极大值(2)由题意知恒成立即()恒成立设=,则设,易知在单调递增,又=<0,>0,所以在有唯一零点,即=0,且,单调递减;,单调递增,所以=,由=0得=,即,由(1)的单调性知,,,所以==1,即实数的取值范围为【题目点拨】本题主要考查导数在函数中的综合应用,以及恒成立问题的求解,着重考查了转化与化归思想、逻辑推理能力与计算能力,对于恒成立问题,通常要构造新函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题.20、(Ⅰ);(Ⅱ).【解题分析】分析:(Ⅰ)取AD中点为O,连接CO,PO,由已知可得CO⊥AD,PO⊥AD.以O为坐标原点,建立空间直角坐标系,求得P(0,0,1),B(1,1,0),D(0,﹣1,0),C(2,0,0),进一步求出向量的坐标,再求出平面PCD的法向量,设PB与平面PCD的夹角为θ,由求得直线PB与平面PCD所成角的正弦值;(Ⅱ)假设存在M点使得BM∥平面PCD,设,M(0,y1,z1),由可得M(0,1﹣λ,λ),,由BM∥平面PCD,可得,由此列式求得当时,M点即为所求.详解:(1)取AD的中点O,连接PO,CO.因为PA=PD,所以PO⊥AD.又因为PO⊂平面PAD,平面PAD⊥平面ABCD,所以PO⊥平面ABCD.因为CO⊂平面ABCD,所以PO⊥CO.因为AC=CD,所以CO⊥AD.以O为坐标原点,建立空间直角坐标系如图:则P(0,0,1),B(1,1,0),D(0,﹣1,0),C(2,0,0),则,,设为平面PCD的法向量,则由,得,则.设PB与平面PCD的夹角为θ,则=;(2)假设存在M点使得BM∥平面PCD,设,M(0,y1,z1),由(Ⅱ)知,A(0,1,0),P(0,0,1),,B(1,1,0),,则有,可得M(0,1﹣λ,λ),∴,∵BM∥平面PCD,为平面PCD的法向量,∴,即,解得.综上,存在点M,即当时,M点即为所求.点睛:点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.21、(1);(2)见解析.【解题分析】
(1)求得曲线在点处的切线,根据题意可知圆C的圆心在此切线上,可得a的值.(2)根据得出极值,结合单调区间和函数图像,分类讨论的值和交点个数。【题目详解】(1),∴,,所以曲线在点处的切线方程为由切线平分圆C:的周长可知圆心在切线上,∴,∴(2)由(1)知,,令,解得或当或时,,故在,上为增函数;当时,,故在上为减函数.由此可知,在处取得极大值在处取得极小值大致图像如图:当或时,的图象与直线有一个交
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工业节能减排的技术与政策探讨
- 工业电机故障诊断与维护策略
- 工业设计在产品创新中的价值
- 工业节能的智慧能源管理
- 工业设计与产品创新表达
- 工业设计产品外观的色彩搭配与创新性
- 工作环境对教师工作满意度的影响
- 工厂企业消防安全管理
- 工程机械设备安全防护技术
- 工厂环境与职业健康安全培训
- 利用对称性计算图示结构,作弯矩图EI=常数
- 成都市2022级(2025届)高中毕业班摸底测试(零诊)化学试卷(含答案)
- 2024届广东省广州市白云区小升初必考题数学检测卷含解析
- 中医基础理论考试题库及答案五
- 开票税点自动计算器
- 国家开放大学电大《10861理工英语4》期末终考题库及答案
- 广东省中山市2022-2023学年高一年级下册期末统一考试物理试题含解析
- 2024年横州茉莉花投资集团有限责任公司招聘笔试冲刺题(带答案解析)
- 蔬菜栽培学智慧树知到期末考试答案章节答案2024年浙江大学
- JB-T 14320-2022 氧气用止回阀
- 专题强化三 异面直线、线面角和二面角技巧-2021-2022学年高一数学【考题透析】满分计划系列(人教A版2019必修第二册)
评论
0/150
提交评论