版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省淄博市实验中学数学高二下期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,则集合的子集个数为()A.3 B.4 C.7 D.82.某一批花生种子,如果每1粒发芽的概率为,那么播下4粒种子恰有2粒发芽的概率是()A. B. C. D.3.若全集,集合,则()A. B. C. D.4.在极坐标系中,圆的圆心的极坐标是()A. B. C. D.5.设函数在上存在导函数,对于任意的实数,都有,当时,,若,则实数的取值范围是()A. B. C. D.6.“”是双曲线的离心率为()A.充要条件 B.必要不充分条件 C.即不充分也不必要条件 D.充分不必要条件7.某同学将收集到的六组数据制作成散点图如图所示,并得到其回归直线的方程为l1:y=0.68x+a,计算其相关系数为r1,相关指数为R12.经过分析确定点F为“离群点”,把它去掉后,再利用剩下的5组数据计算得到回归直线的方程为l2A.r1>0,C.a=0.12 D.8.设,为两条不同的直线,,为两个不同的平面,则()A.若,,则 B.若,,则C.若,,则 D.若,,则9.若点为圆C:的弦MN的中点,则弦MN所在直线的方程为()A. B. C. D.10.已知函数,若,均在[1,4]内,且,,则实数的取值范围是()A. B. C. D.11.设,且,若能被100整除,则等于()A.19 B.91 C.18 D.8112.如图所示,在一个边长为2.的正方形AOBC内,曲和曲线围成一个叶形图阴影部分,向正方形AOBC内随机投一点该点落在正方形AOBC内任何一点是等可能的,则所投的点落在叶形图内部的概率是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.对于,,规定,集合,则中的元素的个数为__________.14.二项式的展开式中的系数为,则________.15.函数y=sin2x+2sin2x的最小正周期T为_______.16.已知双曲线的左右焦点分别为,过点的直线交双曲线右支于两点,若是以为直角顶点的等腰三角形,则的面积为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在极坐标系中,圆的方程为.以极点为坐标原点,极轴为轴的正半轴建立平面直角坐标系,设直线的参数方程为(为参数).(1)求圆的标准方程和直线的普通方程;(2)若直线与圆交于两点,且,求实数的取值范围.18.(12分)已知数列的前项和,且().(1)若数列是等比数列,求的值;(2)求数列的通项公式。19.(12分)已知a,b,c分别为△ABC内角A,B,C的对边,向量,且.(1)求角C;(2)若,△ABC的面积为,求△ABC内切圆的半径.20.(12分)已知正项数列满足,数列的前项和满足.(1)求数列,的通项公式;(2)求数列的前项和.21.(12分)设函数.(1)若是的极值点,求的值.(2)已知函数,若在区间(0,1)内仅有一个零点,求的取值范围.22.(10分)为了促进学生的全面发展,某市教育局要求本市所有学校重视社团文化建设,2014年该市某中学的某新生想通过考核选拨进入该校的“电影社”和“心理社”,已知该同学通过考核选拨进入这两个社团成功与否相互独立根据报名情况和他本人的才艺能力,两个社团都能进入的概率为,至少进入一个社团的概率为,并且进入“电影社”的概率小于进入“心理社”的概率(Ⅰ)求该同学分别通过选拨进入“电影社”的概率和进入心理社的概率;(Ⅱ)学校根据这两个社团的活动安排情况,对进入“电影社”的同学增加1个校本选修课学分,对进入“心理社”的同学增加0.5个校本选修课学分.求该同学在社团方面获得校本选修课学分分数不低于1分的概率.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】分析:先求出集合B中的元素,从而求出其子集的个数.详解:由题意可知,集合B={z|z=x+y,x∈A,y∈A}={0,1,2},则B的子集个数为:23=8个,故选D.点睛:本题考察了集合的子集个数问题,若集合有n个元素,其子集有2n个,真子集有2n-1个,非空真子集有2n-2个.2、B【解题分析】
解:根据题意,播下4粒种子恰有2粒发芽即4次独立重复事件恰好发生2次,由n次独立重复事件恰好发生k次的概率的公式可得,故选B.3、C【解题分析】
分别化简求解集合U,A,再求补集即可【题目详解】因为,,所以.故选:C【题目点拨】本题考查集合的运算,考查运算求解能力.4、B【解题分析】
先把圆的极坐标方程化为直角坐标方程,确定其圆心的直角坐标再化成极坐标即可.【题目详解】圆化为,,配方为,因此圆心直角坐标为,可得圆心的极坐标为故选B【题目点拨】本题考查极坐标方程与直角坐标方程的转化,点的直角坐标与极坐标的转化,比较基础.5、A【解题分析】
记,由可得,所以为奇函数,又当时,,结合奇函数性质,可得在上单调递减,处理,得,所以,可得出的范围.【题目详解】解:因为,所以记,则所以为奇函数,且又因为当时,,即所以当时,,单调递减又因为为奇函数,所以在上单调递减若则即所以所以故选:A.【题目点拨】本题考查了函数单调性与奇偶性的综合运用,利用导数研究函数的单调性,构造函数法解决抽象函数问题,观察结构特点巧妙构造函数是关键.6、D【解题分析】
将双曲线标准化为,由于离心率为可得,在根据充分、必要条件的判定方法,即可得到结论.【题目详解】将双曲线标准化则根据离心率的定义可知本题中应有,则可解得,因为可以推出;反之成立不能得出.故选:.【题目点拨】本题考查双曲的离心率公式,考查充分不必要条件的判断,双曲线方程的标准化后离心率公式的正确使用是解答本题的关键,难度一般.7、B【解题分析】
根据相关性的正负判断r1和r2的正负,根据两个模型中回归直线的拟合效果得出R12和R2【题目详解】由图可知两变量呈现正相关,故r1>0,r2>0故A正确,B不正确.又回归直线l1:y=0.68x+a必经过样本中心点(3.5,2.5),所以a=2.5-0.68×3.5=0.12回归直线l2:y=bx+0.68必经过样本中心点所以b=0.44,也可直接根据图象判断0<b<0.68(比较两直线的倾斜程度),故D【题目点拨】本题考查回归分析,考查回归直线的性质、相关系数、相关指数的特点,意在考查学生对这些知识点的理解,属于中等题。8、C【解题分析】
根据空间线面关系、面面关系及其平行、垂直的性质定理进行判断.【题目详解】对于A选项,若,,则与平行、相交、异面都可以,位置关系不确定;对于B选项,若,且,,,根据直线与平面平行的判定定理知,,,但与不平行;对于C选项,若,,在平面内可找到两条相交直线、使得,,于是可得出,,根据直线与平面垂直的判定定理可得;对于D选项,若,在平面内可找到一条直线与两平面的交线垂直,根据平面与平面垂直的性质定理得知,只有当时,才与平面垂直.故选C.【题目点拨】本题考查空间线面关系以及面面关系有关命题的判断,判断时要根据空间线面、面面平行与垂直的判定与性质定理来进行,考查逻辑推理能力,属于中等题.9、A【解题分析】
根据题意,先求出直线PC的斜率,根据MN与PC垂直求出MN的斜率,由点斜式,即可求出结果.【题目详解】由题意知,圆心的坐标为,则,由于MN与PC垂直,故MN的斜率,故弦MN所在的直线方程为,即.故选A【题目点拨】本题主要考查求弦所在直线方程,熟记直线的点斜式方程即可,属于常考题型.10、D【解题分析】
先求导,利用函数的单调性,结合,确定;再利用,即,可得,,设,,确定在上递增,在有零点,即可求实数的取值范围.【题目详解】解:,当时,恒成立,则f(x)在(0,+∞)上递增,则f(x)不可能有两个相等的函数值.故;由题设,则=考虑到,即,设,,则在上恒成立,在上递增,在有零点,则,,故实数的取值范围是.【题目点拨】本题考查了通过构造函数,转化为函数存在零点,求参数取值范围的问题,本题的难点是根据已知条件,以及,变形为,,然后构造函数转化为函数零点问题.11、A【解题分析】
将化为,根据二巷展开式展开后再根据余数的情况进行分析后可得所求.【题目详解】由题意得,其中能被100整除,所以要使能被100整除,只需要能被100整除.结合题意可得,当时,能被100整除.故选A.【题目点拨】整除问题是二项式定理中的应用问题,解答整除问题时要关注展开式的最后几项,本题考查二项展开式的应用,属于中档题.12、C【解题分析】
欲求所投的点落在叶形图内部的概率,须结合定积分计算叶形图(阴影部分)平面区域的面积,再根据几何概型概率计算公式求解.【题目详解】联立得.由图可知基本事件空间所对应的几何度量,满足所投的点落在叶形图内部所对应的几何度量:(A).所以(A).故选:.【题目点拨】本题综合考查了几何概型及定积分在求面积中的应用,考查定积分的计算,意在考查学生对这些知识的理解掌握水平.二、填空题:本题共4小题,每小题5分,共20分。13、2【解题分析】分析:由⊕的定义,ab=1分两类进行考虑:a和b一奇一偶,则ab=1;a和b同奇偶,则a+b=1.由a、b∈N*列出满足条件的所有可能情况,再考虑点(a,b)的个数即可详解:ab=1,a、b∈N*,若a和b一奇一偶,则ab=1,满足此条件的有1×1=3×12=4×9,故点(a,b)有6个;若a和b同奇偶,则a+b=1,满足此条件的有1+35=2+34=3+33=4+32=…=18+18共18组,故点(a,b)有35个,所以满足条件的个数为2个.故答案为2.点睛:本题考查的知识要点:列举法在排列组合中的应用,正确理解新定义的含义是解决本题的关键.14、【解题分析】分析:先根据二项展开式的通项求得的系数,进而得到的值,然后再根据微积分基本定理求解即可.详解:二项式的展开式的通项为,令,可得的系数为,由题意得,解得.∴.点睛:解答有关二项式问题的关键是正确得到展开式的通项,然后根据题目要求求解.定积分计算的关键是确定被积函数的原函数,然后根据微积分基本定理求解.15、【解题分析】考点:此题主要考查三角函数的概念、化简、性质,考查运算能力.16、【解题分析】设,根据双曲线的定义,有,即.,,故三角形面积为.点睛:本题主要考查双曲线的定义,考查直线与圆锥曲线的位置关系,考查数形结合的数学思想方法和化归与转化的数学思想方法.解答直线与圆锥曲线位置关系题目时,首先根据题意画出曲线的图像,然后结合圆锥曲线的定义和题目所给已知条件来求解.利用题目所给等腰直角三角形,结合定义可求得直角三角形的边长,由此求得面积.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)详见解析;(2)。【解题分析】试题分析:(1)由得,根据极坐标与直角坐标互化公式,,所以圆C的标准方程为,直线的参数方程为,由得,代入得:,整理得:;(2)直线与圆C相交于A,B两点,圆心到直线:距离,根据直线与圆相交所得的弦长公式,所以,由题意,所以得,即,整理得:,即,解得:。试题解析:(1)的直角坐标方程为,在直线的参数方程中消得:;(2)要满足弦及圆的半径为可知只需圆心到直线的距离即可。由点到直线的距离公式有:,整理得:即解得:,故实数的取值范围为:考点:1.极坐标;2.参数方程。18、(1)1;(2)()【解题分析】分析:(1)由可得,∴a2=3,a3=7,依题意,得(3+t)2=(1+t)(7+t),解得t=1;(2)由(1),知当n≥2时,,即数列{an+1}是以2为首项,2为公比的等比数列,得,即可求通项.详解:(1)当时,由,得.当时,,即,∴,.依题意,得,解得,当时,,,即为等比数列成立,故实数的值为1;(2)由(1),知当时,,又因为,所以数列是以2为首项,2为公比的等比数列.所以,∴().点睛:(1)证明数列为等比数列时,常运用等比数列的定义去证明,在证明过程中,容易忽视验证首项不为零这一步骤。(2)数列通项的求法方法多样,解题时要根据数列通项公式的特点去选择。常用的方法有:公式法、累加法、累乘法、待定系数法、取倒数等。19、(1)(2)【解题分析】
(1)由得出,利用正弦定理边角互化的思想,以及内角和定理将转化为,并利用两角和的正弦公式求出的值,于此得出角的值;(2)由三角形的面积公式求出,结合余弦定理得出的值,可求出的值,再利用等面积法得出,即可得出的内切圆半径的值.【题目详解】(1)由得,由正弦定理,,.在中,,;(2)由等面积法:得.由余弦定理,,,从而,.【题目点拨】本题考查利用正弦定理、余弦定理解三角形,以及三角形面积的应用,考查三角形内切圆半径的计算,在计算内切圆的半径时,可利用等面积法得出(其中为三角形的面积,为三角形的周长),考查运算求解能力,属于中等题.20、(1),.(2).【解题分析】试题分析:(1)由题意结合所给的递推公式可得数列是以为首项,为公差的等差数列,则,利用前n项和与通项公式的关系可得的通项公式为.(2)结合(1)中求得的通项公式裂项求和可得数列的前项和.试题解析:(1)因为,所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 博物馆大楼租赁合同
- 教堂用地租赁协议
- 个体饰品店店长聘用合同模板
- 商业综合体批荡施工合同
- 水文地质私人施工合同样式
- 城市绿化工程评标细则模板
- 软件产品合规管理办法
- 林业工程调整合同
- 家电清洗创业规划书
- 金融学生规划
- 报告文学研究
- 5.2《大学之道》课件+2024-2025学年统编版高中语文选择性必修上册
- 案例2-5 节能效果对比讲解
- 荆楚民艺智慧树知到期末考试答案章节答案2024年湖北第二师范学院
- SH/T 3065-2024 石油化工管式炉急弯弯管工程技术规范(正式版)
- 穿脱隔离衣的流程及注意事项
- GB/T 43878-2024旋挖钻机截齿
- 四年级语文上册期末试卷(下载)
- 拼多多营销总结报告
- 手术室护士交接流程
- 中式面点技艺智慧树知到期末考试答案2024年
评论
0/150
提交评论