版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届自贡市重点中学高二数学第二学期期末达标检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知(是实常数)是二项式的展开式中的一项,其中,那么的值为A. B. C. D.2.设是平面内的两条不同直线,是平面内两条相交直线,则的一个充分不必要条件是()A.B.C.D.3.在某项测试中,测量结果与服从正态分布,若,则()A.0.4 B.0.8 C.0.6 D.0.214.设命题,,则为().A., B.,C., D.,5.某小区的6个停车位连成一排,现有3辆车随机停放在车位上,则任何两辆车都不相邻的停放方式有()种.A.24 B.72 C.120 D.1446.已知函数是(-∞,+∞)上的减函数,则a的取值范围是A.(0,3) B.(0,3] C.(0,2) D.(0,2]7.设,,,则()A. B. C. D.8.已知是定义在上的函数,且对任意的都有,,若角满足不等式,则的取值范围是()A. B. C. D.9.一个几何体的三视图如图所示,正视图、侧视图和俯视图都是由一个边长为的正方形及正方形内一段圆弧组成,则这个几何体的表面积是()A. B. C. D.10.设函数的导函数为,若是奇函数,则曲线在点处切线的斜率为()A. B.-1 C. D.11.已知集合,则()A. B.C. D.12.若集合,函数的定义域为集合B,则A∩B等于()A.(0,1)B.[0,1)C.(1,2)D.[1,2)二、填空题:本题共4小题,每小题5分,共20分。13.如图,是正方体的棱上的一点,且平面,则异面直线与所成角的余弦值为______.14.点在直径为的球面上,过作两两垂直的三条弦,若其中一条弦长是另一条弦长的倍,则这三条弦长之和的最大值是_________.15.已知复数z和ω满足|z|-z=41-i,且ω16.观察下面一组等式:,,,,根据上面等式猜测,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知.(1)当时,求不等式的解集;(2)若时不等式成立,求的取值范围.18.(12分)已知数列的前项和(1)求的通项公式;(2)若数列满足:,求的前项和(结果需化简)19.(12分)某市要对该市六年级学生进行体育素质调查测试,现让学生从“跳绳、短跑米、长跑米、仰卧起坐、游泳米、立定跳远”项中选择项进行测试,其中“短跑、长跑、仰卧起坐”项中至少选择其中项进行测试.现从该市六年级学生中随机抽取了名学生进行调查,他们选择的项目中包含“短跑、长跑、仰卧起坐”的项目个数及人数统计如下表:(其中)选择的项目中包含“短跑、长跑、仰卧起坐”的项目个数人数已知从所调查的名学生中任选名,他们选择“短跑、长跑、仰卧起坐”的项目个数不相等概率为,记为这名学生选择“短跑、长跑、仰卧起坐”的项目个数之和.(1)求的值;(2)求随机变量的分布列和数学期望.20.(12分)已知函数,.(1)当时,求的极值;(2)若且对任意的,恒成立,求的最大值.21.(12分)以下是某地搜集到的新房源的销售价格(万元)和房屋的面积的数据:房屋面积销售价格(万元)(1)由散点图看出,可用线性回归模型拟合与的关系,求关于的线性回归方程;(2)请根据(1)中的线性回归方程,预测该地当房屋面积为时的销售价格。,,其中,22.(10分)如图,在四棱锥中,为矩形,是以为直角的等腰直角三角形,平面⊥平面.(1)证明:平面⊥平面;(2)为直线的中点,且,求二面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
根据二项式定理展开式的通项公式,求出m,n的值,即可求出k的值.【题目详解】展开式的通项公式为Tt+1=x5﹣t(2y)t=2tx5﹣tyt,∵kxmyn(k是实常数)是二项式(x﹣2y)5的展开式中的一项,∴m+n=5,又m=n+1,∴得m=3,n=2,则t=n=2,则k=2t224×10=40,故选A.【题目点拨】本题主要考查二项式定理的应用,结合通项公式建立方程求出m,n的值是解决本题的关键.2、B【解题分析】试题分析:A.不能得出,所以本题条件是的不充分条件;B.,当时,不一定有故本命题正确;C.不能得出,故不满足充分条件;D.不能得出,故不满足充分条件;故选B.考点:平面与平面垂直的方法.3、B【解题分析】
根据已知条件,求出正态分布曲线的对称轴为,根据对称性可求出的值,进而可求【题目详解】解:测量结果与服从正态分布正态分布曲线的对称轴为故选:B.【题目点拨】本题考查了正态分布中概率问题的求解.在解此类问题时,结合正态分布曲线图像进行求解,其关键是找到曲线的对称轴.4、A【解题分析】
根据含有一个量词的命题的否定,可直接得出结果.【题目详解】解:表示对命题的否定,“,”的否定是“,”.故选.【题目点拨】本题主要考查命题的否定,只需改写量词与结论即可,属于常考题型.5、A【解题分析】分析:根据题意,首先排好三辆车,在三辆车中间插入两个空位使三辆车任何两辆车都不相邻,最后一个空车位利用插空法即可.详解:根据题意,首先排好三辆车,共种,在三辆车中间插入两个空位使三辆车任何两辆车都不相邻,最后把剩下的空车位插入空位中,则有种,由分步计数原理,可得共有种不同的停车方法.点睛:本题考查排列、组合的综合应用,注意空位是相同的.6、D【解题分析】
由为上的减函数,根据和时,均单调递减,且,即可求解.【题目详解】因为函数为上的减函数,所以当时,递减,即,当时,递减,即,且,解得,综上可知实数的取值范围是,故选D.【题目点拨】本题主要靠考查了分段函数的单调性及其应用,其中熟练掌握分段的基本性质,列出相应的不等式关系式是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.7、C【解题分析】
分别求出,,的范围,从而得到答案.【题目详解】根据指数函数图像可得,,;由于,则,则;所以;故答案选C【题目点拨】本题考查指数、对数值的大小比较,解题的关键利用指数对数的运算法则求出值的范围,属于中档题.8、A【解题分析】
构造新函数,由可得为单调减函数,由可得为奇函数,从而解得的取值范围.【题目详解】解:令因为,所以为R上的单调减函数,又因为,所以,即,即,所以函数为奇函数,故,即为,化简得,即,即,由单调性有,解得,故选A.【题目点拨】本题考查了函数性质的综合运用,解题的关键是由题意构造出新函数,研究其性质,从而解题.9、C【解题分析】
画出直观图,由球的表面积公式求解即可【题目详解】这个几何体的直观图如图所示,它是由一个正方体中挖掉个球而形成的,所以它的表面积为.故选:C【题目点拨】本题考查三视图以及几何体的表面积的计算,考查空间想象能力和运算求解能力.10、D【解题分析】
先对函数求导,根据是奇函数,求出,进而可得出曲线在点处切线的斜率.【题目详解】由题意得,.是奇函数,,即,解得,,则,即曲线在点处切线的斜率为.故选.【题目点拨】本题主要考查曲线在某点处的切线斜率,熟记导数的几何意义即可,属于常考题型.11、D【解题分析】,所以,故选B.12、D【解题分析】试题分析:,,所以。考点:1.函数的定义域;2.集合的运算。二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】不妨设正方体的棱长为,如图,当为中点时,平面,则为直线与所成的角,在中,,故答案为.【方法点晴】本题主要考查异面直线所成的角,属于难题.求异面直线所成的角主要方法有两种:一是向量法,根据几何体的特殊性质建立空间直角坐标系后,分别求出两直线的方向向量,再利用空间向量夹角的余弦公式求解;二是传统法,利用平行四边形、三角形中位线等方法找出两直线成的角,再利用平面几何性质求解.14、【解题分析】
设三条弦长分别为x,2x,y,由题意得到关于x,y的等量关系,然后三角换元即可确定弦长之和的最大值.【题目详解】设三条弦长分别为x,2x,y,则:,即:5x2+y2=6,设,则这3条弦长之和为:3x+y=,其中,所以它的最大值为:.故答案为.【题目点拨】本题主要考查长方体外接球模型的应用,三角换元求最值的方法等知识,意在考查学生的转化能力和计算求解能力.15、1+i或-1-i【解题分析】
本题首先可以设z=a+bi(a,b∈R),由|z|-z=41-i,可得a=0、b=22,则【题目详解】设z=a+bi(a,b∈R),由|z|-z=4所以a2+b所以z=2i。令ω=m+ni(m,n∈R),由ω2=z,得所以2mn=2m2-n2所以ω=1+i或-1-i。故答案为:1+i或-1-i。【题目点拨】本题考查复数代数形式的乘除运算,考查复数相等的条件,是中档题。复数的运算,难点是乘除法法则,设z1则z1z116、【解题分析】由已知可得,因此,从而.点睛:归纳推理是通过观察个别情况发现某些相同本质,从已知相同本质中推出一个明确表述的一般性命题,本题是数的归纳,它包括数字归纳和式子归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系有关的知识,如等差数列、等比数列等.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】分析:(1)将代入函数解析式,求得,利用零点分段将解析式化为,然后利用分段函数,分情况讨论求得不等式的解集为;(2)根据题中所给的,其中一个绝对值符号可以去掉,不等式可以化为时,分情况讨论即可求得结果.详解:(1)当时,,即故不等式的解集为.(2)当时成立等价于当时成立.若,则当时;若,的解集为,所以,故.综上,的取值范围为.点睛:该题考查的是有关绝对值不等式的解法,以及含参的绝对值的式子在某个区间上恒成立求参数的取值范围的问题,在解题的过程中,需要会用零点分段法将其化为分段函数,从而将不等式转化为多个不等式组来解决,关于第二问求参数的取值范围时,可以应用题中所给的自变量的范围,去掉一个绝对值符号,之后进行分类讨论,求得结果.18、(1);(2);【解题分析】
(1)运用数列的递推式得时,,时,,化简计算可得所求通项公式;(2)求得,运用数列的错位相减法求和,结合等比数列的求和公式,计算可得所求和.【题目详解】(1)可得时,则(2)数列满足,可得,即,前项和两式相减可得化简可得【题目点拨】本题考查数列的递推式的运用,考查数列的错位相减法求和,以及等比数列的求和公式,考查运算能力,属于中档题.19、(1)(2)见解析【解题分析】分析:(1)由题意结合概率公式得到关于x的方程,解方程可得.(2)由题意可知的可能取值分别为,,,,,该分布列为超几何分布,据此可得到分布列,利用分布列计算数学期望为.详解:(1)记“选择短跑、长跑、仰卧起坐的项目个数相等”为事件,则:,所以,解得或,因为,所以.(2)由题意可知的可能取值分别为,,,,,则,,,,.从而的分布列为:数学期望为.点睛:本题的核心在考查超几何分布.超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.超几何分布的特征是:①考查对象分两类;②已知各类对象的个数;③从中抽取若干个个体,考查某类个体个数X的概率分布,超几何分布主要用于抽检产品、摸不同类别的小球等概率模型,其实质是古典概型.20、(1)极小值为,无极大值;(2)1.【解题分析】
(1)将代入,求其单调区间,根据单调区间即可得到函数的极值.(2)首先将问题转化为,恒成立,设,求出其单调区间和最值即可得到的最大值.【题目详解】(1)当时,,易知函数在上为单调增函数,及所以当,,为减函数.当,,为增函数.所以在时取最小值,即,无极大值.(2)当时,由,即,得.令,则.设,则,在上为增函数,因为,,所以,且,当时,,,在上单调递减;当时,,,在上单调递增.所以,因为,所以,,所以,即的最大值为1.【题目点拨】本题第一问考查利用导数求函数的极值,第二问考查利用导数解决恒成立问题,属于中档题.21、(1).(2)该地房屋面积为时的销售价格为万元.【解题分析】分析:(1)先求出和的平均数,将数据代入,计算出的值,最后根据,求出的值,即可得到线性回归方程;(2)将代入所求的线性回归方程可估计当房屋面积为时的销售价格.详解:(1)设所求线性回归方程为,则∴∴所求线性回归方程为(2)当时,销售价格的估计值为(万元)所以该地房屋面积为时的销售价格为万元点睛:求回归直线方程的步骤:①依据样本数据画出散点图,确定两个变量具有线性相关关系;②计算的值;③计算回归系数;④写出回归直线方程为;回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.22、(Ⅰ)见解析;(Ⅱ).【解题分析】
(Ⅰ)由为矩形,得,再由面面垂直的性质可得平面,则,结合,由线面垂直的判定可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 1.4 地球的圈层结构 课件 人教版(2019)必修一高一上学期
- 七年级上册生命生态安全教案全册1
- 继教课件混凝土结构验收规范
- 4S店装修合同解除范文
- 4S店装修分包协议
- 2021年大学宣传部学期工作总结5篇
- 2023-2024学年全国小学四年级上信息与技术人教版模拟试卷(含答案解析)
- 2024年赣州申请客运从业资格证模拟考试
- 2024年鹰潭客运从业资格证理论考试题
- 2024年江苏客运资格专业能力考试
- 2024年普通考研-学校体育学考试近5年真题集锦(频考类试题)带答案
- 《8的乘法口诀》(教案)-2024-2025学年人教版数学二年级上册
- 2024年首届全国标准化知识竞赛考试题库-上(单选题部分)
- 劳动关系协调员测试题及答案
- 亚临界循环流化床锅炉深度调峰运行技术导则
- 中国药物性肝损伤基层诊疗与管理指南(2024年)解读 2
- 超市经营服务方案投标方案(技术标)
- 第二章中国的自然环境单元复习课件八年级地理上学期人教版
- 2024新教科版一年级上册第二单元《我们自己》第6课观察与比较表格教学设计及反思
- 乡村振兴民宿产业项目可行性研究报告
- 【真题】2024年常州市中考物理试卷(含答案解析)
评论
0/150
提交评论