版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届黑龙江省哈尔滨三十二中高二数学第二学期期末统考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在区间上随机取一个数,使直线与圆相交的概率为()A. B. C. D.2.若角为三角形的一个内角,并且,则()A. B. C. D.3.已知过点作曲线的切线有且仅有1条,则实数的取值是()A.0 B.4 C.0或-4 D.0或44.在数列中,若,,则()A.108 B.54 C.36 D.185.有甲、乙、丙三位同学,分别从物理、化学、生物、政治、历史五门课中任选一门,要求物理必须有人选,且每人所选的科目各不相同,则不同的选法种数为()A.24 B.36 C.48 D.726.若复数满足,则的值是()A. B. C. D.7.不相等的三个正数a、b、c成等差数列,并且x是a、b的等比中项,y是b、c的等比中项,则x2、b2、y2三数()A.成等比数列而非等差数列B.成等差数列而非等比数列C.既成等差数列又成等比数列D.既非等差数列又非等比数列8.已知i为虚数单位,z,则复数z的虚部为()A.﹣2i B.2i C.2 D.﹣29.设是函数的导函数,的图象如图所示,则的图象最有可能的是()A. B.C. D.10.已知集合,若,则实数的值为()A.或 B.或 C.或 D.或或11.A.30 B.24 C.20 D.1512.设,是实数,则的充要条件是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知集合,则_____.14.已知向量满足,,的夹角为,则__________.15.有一个容器,下部分是高为的圆柱体,上部分是与圆柱共底面且母线长为的圆锥,现不考虑该容器内壁的厚度,则该容器的最大容积为___________.16.设为实数时,实数的值是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)数列满足,等比数列满足.(1)求数列的通项公式;(2)设,求数列的前项和.18.(12分)已知函数,其对称轴为y轴(其中为常数).(1)求实数的值;(2)记函数,若函数有两个不同的零点,求实数的取值范围;(3)求证:不等式对任意成立.19.(12分)(1)解不等式:(2)设,求证:20.(12分)在平面直角坐标系中,曲线的参数方程为(,为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.若直线与曲线相切.(1)求曲线的极坐标方程;(2)在曲线上任取两点,,该两点与原点构成,且满足,求面积的最大值.21.(12分)已知函数(1)若在其定义域上是单调增函数,求实数的取值集合;(2)当时,函数在有零点,求的最大值22.(10分)如图所示,某地出土的一种“钉”是由四条线段组成,其结构能使它任意抛至水平面后,总有一端所在的直线竖直向上.并记组成该“钉”的四条等长的线段公共点为,钉尖为.(1)判断四面体的形状,并说明理由;(2)设,当在同一水平面内时,求与平面所成角的大小(结果用反三角函数值表示);(3)若该“钉”着地后的四个线段根据需要可以调节与底面成角的大小,且保持三个线段与底面成角相同,若,,问为何值时,的体积最大,并求出最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
先求出直线和圆相交时的取值范围,然后根据线型的几何概型概率公式求解即可.【题目详解】由题意得,圆的圆心为,半径为,直线方程即为,所以圆心到直线的距离,又直线与圆相交,所以,解得.所以在区间上随机取一个数,使直线与圆相交的概率为.故选C.【题目点拨】本题以直线和圆的位置关系为载体考查几何概型,解题的关键是由直线和圆相交求出参数的取值范围,然后根据公式求解,考查转化和计算能力,属于基础题.2、A【解题分析】分析:利用同角关系,由正切值得到正弦值与余弦值,进而利用二倍角余弦公式得到结果.详解:∵角为三角形的一个内角,且,∴∴故选:A点睛:本题考查了同角基本关系式,考查了二倍角余弦公式,考查了计算能力,属于基础题.3、C【解题分析】
求出导函数,转化求解切线方程,通过方程有两个相等的解,推出结果即可.【题目详解】设切点为,且函数的导数,所以,则切线方程为,切线过点,代入得,所以,即方程有两个相等的解,则有,解得或,故选C.【题目点拨】本题主要考查了导数的几何意义的应用,其中解答中熟记导数的几何意义,求解曲线在某点处的切线方程是解答的关键,着重考查了转化思想,以及推理与运算能力,属于基础题.4、B【解题分析】
通过,可以知道数列是公比为3的等比数列,根据等比数列的通项公式可以求出的值.【题目详解】因为,所以数列是公比为的等比数列,因此,故本题选B.【题目点拨】本题考查了等比数列的概念、以及求等比数列某项的问题,考查了数学运算能力.5、B【解题分析】
先计算每人所选的科目各不相同的选法,再减去不选物理的选法得到答案.【题目详解】每人所选的科目各不相同的选法为:物理没有人选的选法为:则不同的选法种数答案选B【题目点拨】本题考查了排列,利用排除法简化了计算.6、C【解题分析】
先用复数除法进行化简,之后求共轭复数即可.【题目详解】因为故:故其共轭复数为:故选:C.【题目点拨】本题考查复数的除法运算,涉及共轭复数,属基础题.7、B【解题分析】由已知条件,可得由②③得代入①,得=2b,即x2+y2=2b2.故x2、b2、y2成等差数列,故选B.8、C【解题分析】
根据复数的运算法则,化简得,即可得到复数的虚部,得到答案.【题目详解】由题意,复数,所以复数的虚部为,故选C.【题目点拨】本题主要考查了复数的概念,以及复数的除法运算,其中解答中熟记复数的运算法则是解答的关键,着重考查了推理与运算能力,属于基础题.9、C【解题分析】
根据导函数图象,确定出函数的单调区间和极值,从而可得结论.【题目详解】根据的图象可知,当或时,,所以函数在区间和上单调递增;当时,,所以函数在区间上单调递减,由此可知函数在和处取得极值,并且在处取得极大值,在处取得极小值,所以的图象最有可能的是C.故选:C.【题目点拨】本题考查导数与函数单调性、极值的关系,考查数形结合思想和分析能力.解决此类问题,要根据导函数的图象确定原函数的单调区间和极值,一定要注意极值点两侧导数的符号相反.10、D【解题分析】
就和分类讨论即可.【题目详解】因为当时,,满足;当时,,若,所以或.综上,的值为0或1或2.故选D.【题目点拨】本题考查集合的包含关系,属于基础题,解题时注意利用集合中元素的性质(如互异性、确定性、无序性)合理分类讨论.11、A【解题分析】
根据公式:计算即可.【题目详解】因为,故选:A.【题目点拨】本题考查排列数的计算,难度较易.12、C【解题分析】
利用不等式的基本性质证明与可进行互推.【题目详解】对选项C进行证明,即是的充要条件,必要性:若,则两边同时3次方式子仍成立,,成立;充分性:若成,两边开时开3次方根式子仍成立,,成立.【题目点拨】在证明充要条件时,要注意“必要性”与“充分性”的证明方向.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
直接进行交集的运算即可.【题目详解】解:∵A={2,3,4},B={3,5};∴A∩B={3}.故答案为:{3}.【题目点拨】考查列举法的定义以及交集的运算,属于基础题.14、【解题分析】
先计算,再由展开计算即可得解.【题目详解】由,,的夹角为,得.所以.故答案为:.【题目点拨】本题主要考查了利用向量的数量积计算向量的模长,属于基础题.15、【解题分析】
设圆柱底面圆的半径为,分别表示出圆柱和圆锥的体积,利用导数求得极值点,并判断在极值点左右两侧的单调性,即可求得函数的最大值,即为容器的最大容积.【题目详解】设圆柱底面圆的半径为,圆柱体的高为,则圆柱的体积为;圆锥的高为,则圆锥的体积,所以该容器的容积为则,令,即,化简可得,解得,当时,,函数单调递增,当时,,函数单调递减,所以当时,取得最大值;代入可得,故答案为:.【题目点拨】本题考查了导数在体积最值问题中的综合应用,圆柱与圆锥的体积公式应用,属于中档题.16、3【解题分析】
设为实数,,可得或又因为,故答案为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解题分析】分析:(1)由已知可得数列为等差数列,根据等差数列的通项公式求得;再求出和,进而求出公比,代入等比数列的通项公式,即可求得数列的通项公式;(2)利用错位相减法即可求出数列的前项和.详解:解:(1),所以数列为等差数列,则;,所以,则.(2),则两式相减得整理得.点睛:本题主要考查等差数列、等比数列的定义与通项公式,考查错位相减法求数列前项和,考查学生运算求解能力.错位相减法是必须掌握的求和方法之一:若,其中是公差为d的等差数列,是公比为的等比数列.具体运算步骤如下:1、写出新数列的和.……(1)2、等式左右同时乘以等比数列部分的公比.……(2)3、两式相减.(1)-(2)整理得:注意:首项系数为正,末项系数为负,中间有项.4、求.最后再化简整理为最简形式即可.18、(1)(2)(3)证明见解析【解题分析】
(1)由二次函数的性质可知对称轴为,则,即可求解;(2)由(1),则,转化函数有两个不同的零点为方程有两个不相等的实数根,则,进而求解即可;(3)将与分别代入中可得,利用配方法证明即可.【题目详解】(1)解:因为的对称轴为轴,而的对称轴为,所以有,所以(2)解:依题意有两个不同的零点,即关于的方程有两个不相等的实数根,所以,即,则(3)证明:因为恒成立,所以对恒成立【题目点拨】本题考查二次函数的图象与性质的应用,考查二次函数零点的个数的问题,考查不等式恒成立的证明.19、(1)(2)见解析【解题分析】
(1)根据零点分段法,分三段建立不等式组,解出各不等式组的解集,再求并集即可.(2)运用柯西不等式,直接可以证明不等式,注意考查等号成立的条件,.【题目详解】(1)解:原不等式等价于或或即:或或故元不等式的解集为:(2)由柯西不等式得,,当且仅当,即时等号成立.所以【题目点拨】本题考查绝对值不等式得解法、柯西不等式等基础知识,考查运算能力.含绝对值不等式的解法:(1)定义法;即利用去掉绝对值再解(2)零点分段法:通常适用于含有两个及两个以上的绝对值符号的不等式;(3)平方法:通常适用于两端均为非负实数时(比如);(4)图象法或数形结合法;20、(1);(2)【解题分析】
(1)由直线与圆相切,可得圆心到直线的距离等于半径,列方程求解,进而由直角坐标转化为极坐标即可;(2)设,(,,),由,展开利用三角函数求最值即可.【题目详解】(1)由题意可知,直线的直角坐标方程为.曲线是圆心为,半径为的圆,由直线与曲线相切可得.可知曲线的直角坐标方程为.所以曲线的极坐标方程为,即.(2)由(1)不妨设,(,,)..当时,面积的最大值为.【题目点拨】本题主要考查了直角坐标与极坐标的互化,考查了极坐标系下三角形的面积公式,考查了三角函数的最值问题,属于中档题.21、(1);(2)最大值为【解题分析】
(1)确定函数定义域,求导,导函数大于等于0恒成立,利用参数分离得到答案.(2)当时,代入函数求导得到函数的单调区间,依次判断每个区间的零点情况,综合得到答案.【题目详解】解:(1)的定义域为在上恒成立,即即实数的取值集合是(2)时,,即在区间和单调增,在区间上单调减.在最小值为且在上没有零点.要想函数在上有零点,并考虑到在区间上单调且上单减,只须且,易检验当时,且时均有,即函数在上有上有零点.的最大值为【题目点拨】本题考查了函数单调性,恒成立问题,参数分离法,零点问题,综合性强难度大,需要灵活运用导数各个知识点.22、(1)正四面体;理由见解析(2);(3)当时,最大体积为:;【解题分析】
(1)根据线段等长首先确定为四面体外接球球心;又底面,可知为正三棱锥;依次以为顶点均有正三棱锥结论出现,可知四面体棱长均相等,可知其为正四面体;(2)由为四面体外接球球心及底面可得到即为所求角;设正四面体棱长为,利用表示出各边,利用勾股定理构造方程可求得,从而可求得,进而得到结果;(3)取中点,利用三线合一性质可知,从而可用表示出底面边长和三棱锥的高,根据三棱锥体积公式可将体积表示为关于的函数,利用导数求得函数的最大值,并确定此时的取值,从而得到结果.【题目详解】(1)四面体为正四面体,理由如下:四条线段等长,即到四面体四个顶点距离相等为四面体外接球的球心又底面在底面的射影为的外心四面体为正三棱锥,即,又任意抛至水平面后,总有一端所在的直线竖直向上,若竖直向上可得:可知四面体各条棱长均相等为正四面体(2)由(1)知,四面体为正四面体,且为其外接球球
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论