2024届河北省衡中清大教育集团数学高二第二学期期末教学质量检测试题含解析_第1页
2024届河北省衡中清大教育集团数学高二第二学期期末教学质量检测试题含解析_第2页
2024届河北省衡中清大教育集团数学高二第二学期期末教学质量检测试题含解析_第3页
2024届河北省衡中清大教育集团数学高二第二学期期末教学质量检测试题含解析_第4页
2024届河北省衡中清大教育集团数学高二第二学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河北省衡中清大教育集团数学高二第二学期期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知定义在R上的偶函数(其中e为自然对数的底数),记,,,则a,b,c的大小关系是()A. B. C. D.2.中,边的高为,若,,,,,则()A. B. C. D.3.《九章算术》中有这样一个问题:今有竹九节,欲均减容之(其意为:使容量均匀递减),上三节容四升,下三节容二升,中三节容几何?()A.二升 B.三升 C.四升 D.五升4.己知集合,,若,则实数的取值范围_______.A. B. C. D.5.已知抛物线,过其焦点且斜率为1的直线交抛物线于两点,若线段的中点的纵坐标为2,则该抛物线的准线方程为A. B.C. D.6.若函数y=a|x|(a>0,且a≠1)的值域为{y|0<y≤1},则函数y=loga|x|的图象大致是()A. B. C. D.7.下列命题:①在一个列联表中,由计算得,则有的把握确认这两类指标间有关联②若二项式的展开式中所有项的系数之和为,则展开式中的系数是③随机变量服从正态分布,则④若正数满足,则的最小值为其中正确命题的序号为()A.①②③ B.①③④ C.②④ D.③④8.函数在区间上是增函数,则实数的取值范围是()A. B. C. D.9.已知函数的定义域为,集合,则()A. B. C. D.10.的展开式中的系数为()A. B. C. D.11.设表示不超过的最大整数(如,).对于给定的,定义,.若当时,函数的值域是(),则的最小值是()A. B. C. D.12.设锐角的三个内角的对边分别为且,,则周长的取值范围为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在中,,,分别是角,,所对的边,且,则的最大值为_________.14.已知直线的一个法向量,则直线的倾斜角是_________(结果用反三角函数表示);15.某地球仪上北纬纬线长度为,则该地球仪的体积为_______.16.现在“微信抢红包”异常火爆.在某个微信群某次进行的抢红包活动中,若所发红包的总金额9元,被随机分配为元,元,元,元,元,共5份,供甲、乙等5人抢,每人只能抢一次,则甲、乙二人抢到的金额之和不低于5元的概率是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)若在处取得极值,求的单调递减区间;(2)若在区间内有极大值和极小值,求实数的取值范围.18.(12分)根据以往的经验,某工程施工期间的降水量X(单位:mm)对工期的影响如下表:降水量XX<300300≤X<700700≤X<900X≥900工期延误天数Y02610历年气象资料表明,该工程施工期间降水量X小于300,700,900的概率分别为0.3,0.7,0.9.求:工期延误天数Y的均值与方差;19.(12分)如图,在四棱锥中,底面是边长为的菱形,,且平面平面.(1)证明:(2)求二面角的余弦值.20.(12分)已知是抛物线的焦点,是抛物线上一点,且.(1)求抛物线的方程;(2)直线与抛物线交于两点,若(为坐标原点),则直线是否会过某个定点?若是,求出该定点坐标,若不是,说明理由.21.(12分)在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的方程为,过点的直线的参数方程为(为参数).(Ⅰ)求直线的普通方程与曲线的直角坐标方程;(Ⅱ)若直线与曲线交于、两点,求的值,并求定点到,两点的距离之积.22.(10分)已知函数(为常数,是自然对数的底数),曲线在点处的切线与轴平行.(1)求的值;(2)求的单调区间.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

先根据函数奇偶性,求出,得到,再由指数函数单调性,以及余弦函数单调性,得到在上单调递增,进而可得出结果.【题目详解】因为是定义在R上的偶函数,所以,即,即,所以,解得:,所以,当时,,因为是单调递增函数,在上单调递减,所以在上单调递增,又,所以,即.故选:A.【题目点拨】本题主要考查由函数单调比较大小,由函数奇偶性求参数,熟记函数单调性与奇偶性即可,属于常考题型.2、D【解题分析】

试题分析:由,,可知3、B【解题分析】

由题意可得,上、中、下三节的容量成等差数列.再利用等差数列的性质,求出中三节容量,即可得到答案.【题目详解】由题意,上、中、下三节的容量成等差数列,上三节容四升,下三节容二升,则中三节容量为,故选B.【题目点拨】本题主要考查了等差数列的性质的应用,其中解答中熟记等差数列的等差中项公式是解答的关键,着重考查了运算与求解能力,属于基础题.4、B【解题分析】

首先解出集合,若满足,则当时,和恒成立,求的取值范围.【题目详解】,,即当时,恒成立,即,当时恒成立,即,而是增函数,当时,函数取得最小值,且当时,恒成立,,解得:综上:.故选:B【题目点拨】本题考查根据给定区间不等式恒成立求参数取值范围的问题,意在考查转化与化归和计算求解能力,恒成立问题可以参变分离转化为求函数的最值问题,如果函数是二次函数可以转化为根的分布问题,列不等式组求解.5、B【解题分析】∵y2=2px的焦点坐标为,∴过焦点且斜率为1的直线方程为y=x-,即x=y+,将其代入y2=2px得y2=2py+p2,即y2-2py-p2=0.设A(x1,y1),B(x2,y2),则y1+y2=2p,∴=p=2,∴抛物线的方程为y2=4x,其准线方程为x=-1.故选B.6、A【解题分析】由函数y=a|x|(a>0,且a≠1)的值域为{y|0<y≤1},得0<a<1.y=loga|x|在上为单调递减,排除B,C,D又因为y=loga|x|为偶函数,函数图象关于y轴对称,故A正确.故选A.7、B【解题分析】

根据可知①正确;代入可求得,利用展开式通项,可知时,为含的项,代入可求得系数为,②错误;根据正态分布曲线的对称性可知③正确;由,利用基本不等式求得最小值,可知④正确.【题目详解】①,则有的把握确认这两类指标间有关联,①正确;②令,则所有项的系数和为:,解得:则其展开式通项为:当,即时,可得系数为:,②错误;③由正态分布可知其正态分布曲线对称轴为,③正确;④,,(当且仅当,即时取等号),④正确.本题正确选项:【题目点拨】本题考查命题真假性的判断,涉及到独立性检验的基本思想、二项展开式各项系数和与指定项系数的求解、正态分布曲线的应用、利用基本不等式求解和的最小值问题.8、D【解题分析】

求出函数的导数,由题意可得恒成立,转化求解函数的最值即可.【题目详解】由函数,得,故据题意可得问题等价于时,恒成立,即恒成立,函数单调递减,故而,故选D.【题目点拨】本题主要考查函数的导数的应用,函数的单调性以及不等式的解法,函数恒成立的等价转化,属于中档题.9、D【解题分析】,解得,即,,所以,故选D.10、D【解题分析】

写出二项展开式的通项,令的指数等于,求出参数的值,再代入通项即可得出项的系数.【题目详解】二项展开式的通项为,令,得,因此,的展开式中的系数为,故选:D.【题目点拨】本题考查二项式指定项的系数的计算,解题的关键就是充分利用二项展开式的通项,考查计算能力,属于中等题.11、B【解题分析】

先根据的定义化简的表达式为,再根据单调性求出函数在两段上的值域,结合已知条件列不等式即可解得.【题目详解】①当时,.在上是减函数,;②当时,.在上是减函数,.的值域是或所以或,的最小值是.故:B.【题目点拨】本题考查了利用函数的单调性求分段函数的值域,属于中档题.12、C【解题分析】因为△为锐角三角形,所以,,,即,,,所以,;又因为,所以,又因为,所以;由,即,所以,令,则,又因为函数在上单调递增,所以函数值域为,故选C点睛:本题解题关键是利用正弦定理实现边角的转化得到周长关于角的函数关系,借助二次函数的单调性求最值,易错点是限制角的取值范围.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

利用正弦定理边化角化简可求得,则有,则借助正弦函数图象和性质即可求出.【题目详解】因为,所以,所以.所以,因为,所以当时,取得最小值.故答案为:.【题目点拨】本题考查正弦定理,三角函数的图象和性质,属于常考题.14、【解题分析】

由法向量与方向向量垂直,求出方向向量,得直线的斜率,从而得倾斜角。【题目详解】直线的一个法向量,则直线的一个方向向量为,其斜率为,∴倾斜角为。故答案为:。【题目点拨】本题考查求直线的倾斜角,由方向向量与法向量的垂直关系可求得直线斜率,从而求得倾斜角,注意倾斜角范围是,而反正切函数值域是。15、【解题分析】

地球仪上北纬纬线的周长为,可求纬线圈的半径,然后求出地球仪的半径,再求体积.【题目详解】作地球仪的轴截面,如图所示:因为地球仪上北纬纬线的周长为,所以,因为,所以,所以地球仪的半径,所以地球仪的体积,故答案为:.【题目点拨】本题地球仪为背景本质考查线面位置关系和球的体积,考查空间想象能力和运算求解能力,是基础题.16、【解题分析】

分析:基本事件总数,再利用列举法求出其中甲、乙二人抢到的金额之和不低于元的情况种数,能求出甲、乙二人抢到的金额之和不低于元的概率.详解:所发红包的总金额为元,被随机分配为元,元,元,元,元,共份,供甲、乙等人抢,每人只能抢一次,基本事件总数,其中甲、乙二人抢到的金额之和不低于元的情况有,种,甲、乙二人抢到的金额之和不低于元的概率,故答案为.点睛:本题考查古典概型概率公式的应用,属于简单题.在解古典概型概率题时,首先求出样本空间中基本事件的总数,其次求出概率事件中含有多少个基本事件,然后根据公式求得概率.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】

分析:(1)由,可得,利用,即,可得,从而可得结果;(2)在内有极大值和极小值,等价于在内有两不等实根,结合二次函数的图象与性质列不等式求解即可.详解:,(1)∵在处取得极值,∴,∴,∴,∴,令,则,∴,∴函数的单调递减区间为.(2)∵在内有极大值和极小值,∴在内有两不等实根,对称轴,∴,即,∴.点睛:本题主要考查利用导数研究函数的单调性与极值,以及一元二次方程根与系数的关系,属于中档题.对于一元二次方程根与系数的关系的题型常见解法有两个:一是对于未知量为不做限制的题型可以直接运用判别式解答(本题属于这种类型);二是未知量在区间上的题型,一般采取列不等式组(主要考虑判别式、对称轴、的符号)的方法解答.18、见解析【解题分析】分析:先求P(X<300)、P(300≤X<700)、P(700≤X<900)、P(X≥900),再求工期延误天数Y的均值与方差.详解:由已知条件和概率的加法公式有:P(X<300)=0.3,P(300≤X<700)=P(X<700)-P(X<300)=0.7-0.3=0.4,P(700≤X<900)=P(X<900)-P(X<700)=0.9-0.7=0.2.P(X≥900)=1-P(X<900)=1-0.9=0.1.所以Y的分布列为:Y02610P0.30.40.20.1于是E(Y)=0×0.3+2×0.4+6×0.2+10×0.1=3;D(Y)=(0-3)2×0.3+(2-3)2×0.4+(6-3)2×0.2+(10-3)2×0.1=9.8.故工期延误天数Y的均值为3,方差为9.8.点睛:(1)本题主要考查概率的计算,考查随机变量的期望和方差的计算,意在考查学生对这些知识的掌握水平和分析推理能力.(2)本题解题的关键是求出P(X<300)、P(300≤X<700)、P(700≤X<900)、P(X≥900).19、(1)证明见解析;(2)【解题分析】

(1)中点为,连接和,证明平面,即可证明;(2)由(1)知,、、两两垂直,以为原点建立空间直角坐标系,分别求出平面和平面的法向量,即可求出二面角的余弦值.【题目详解】(1)设中点为,连接和,如图所示,在中,,为中点,所以,又四边形为菱形,,所以是等边三角形,为中点,所以,又,所以平面,又因为平面,所以.(2)由(1)知,、、两两垂直,以为原点建立空间直角坐标系,如图所示,则,,,,所以,,,设平面的法向量,则,令,则,,所以;设平面的法向量,则,令,则,,所以;因为二面角是锐角,所以,即二面角的余弦值为.【题目点拨】本题主要考查了线面垂直的判定、由线面垂直求线线垂直和利用空间向量求二面角,考查学生空间想象能力和计算能力,属于中档题.20、(1)(2)见解析【解题分析】

(1)由抛物线的定义知得值即可求解(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论