华东师大版七年级数学下册全册教案(2024年春季版)_第1页
华东师大版七年级数学下册全册教案(2024年春季版)_第2页
华东师大版七年级数学下册全册教案(2024年春季版)_第3页
华东师大版七年级数学下册全册教案(2024年春季版)_第4页
华东师大版七年级数学下册全册教案(2024年春季版)_第5页
已阅读5页,还剩181页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

华师大版八年级数学下册全册教案设计

第6章一元一次方程6.1从实际问题到方程1.掌握如何设未知数.2.掌握如何找等式来列方程.3.了解尝试法、代入法寻找方程的解.4.初步建立方程能解决实际问题的观念.5.通过本节的教学,应该使学生体会到数学与实际生活的密切联系,认识到数学的价值.【教学重点】1.确定所有的已知量和确定“谁”是未知数x.2.列方程.【教学难点】找出问题中的相等关系.一、情境导入,初步认识在现实生活中,有很多问题都跟数学有关,例如下面的问题:问题某校初一年级328名师生乘车外出春游,已有2辆校车可乘坐64人,还需租用44座的客车多少辆?这个问题用数学中的什么方法来解决呢?解:(328-64)÷44=264÷44=6(辆)答:还需租用44座的客车6辆.请大家回忆一下,在小学里还学过什么方法可以解决上面的问题?【教学说明】通过实际问题的引入,让学生明白数学的重要性.二、思考探究,获取新知1.在小学里,我们学过方程,你还能记得什么样的式子是方程吗?含有未知数的等式叫方程.2.讲解导入中的问题:根据小学所学的列方程,按照问题问“什么”就设这个“什么”为未知数x的方法来解决这个问题.分析:设需租用客车x辆,则客车可以乘坐44x人,加上校车上的64人,就是328人.列方程为44x+64=328.解:设还需租用44座的客车x辆,则共可乘坐44x人.根据题意列方程得44x+64=328设问:你们谁会解这个方程?请大家自己试一试.【教学说明】初步建立方程能解决实际问题的观念,进入下一步的学习.3.在课外活动中,张老师发现同学的年龄大多是13岁,就问同学:“我今年45岁,几年后你们的年龄是我年龄的三分之一?”方法一:我们可以按年龄的增长依次去试.1年后,老师的年龄是46岁,同学的年龄是14岁,不是老师年龄的三分之一;2年后,老师的年龄是47岁,同学的年龄是15岁,也不是老师年龄的三分之一;3年后,老师的年龄是48岁,同学的年龄是16岁,恰好是老师年龄的三分之一.方法二:也可以用列方程的办法来解.解:设x年后同学的年龄是老师年龄的三分之一,x年后同学的年龄是(13+x)岁,老师年龄是(45+x)岁.根据题意,列出方程得13+x=1/3(45+x)这个方程不太好解,大家可以用尝试、检验的方法找出它的解,即只要将x=1,2,3,4,…代入方程的左右两边,看哪个数能使左右两边的值相等,这样得到方程的解为x=3.【归纳结论】使方程左右两边的值相等的未知数的值,就是方程的解.要检验一个数是否为方程的解,只要把这个数代入方程的左右两边,看能否使左右两边的值相等.如果左右两边的值相等,那么这个数就是方程的解.4.由上面的两个问题,你能总结出列方程解决实际问题的步骤吗?【归纳结论】设未知数x;找出相等关系;根据相等关系列方程.【教学说明】培养学生利用方程的思想解决问题的习惯,找出实际问题中的等量关系,这是解决这类问题的关键.三、运用新知,深化理解1.下列各式中,是方程的是()A.x-2=1B.2x+5C.x+y>0D.3y2.下列方程中,解为x=1的是()A.5/6x=6/5B.-0.7x=-0.7C.-1/4x=1/4D.3x=1/33.下列四个数中,是方程x+2=0的解为()A.2B.-2C.4D.-44.语句“x的3倍比y的1/2大7”用方程表示为:________.5.一根细铁丝用去2/3后还剩2m,若设铁丝的原长为xm,可列方程为________.6.甲、乙两车间共生产电视机120台,甲车间生产的台数是乙车间的3倍少16,求甲、乙两车间各生产电视机多少台(列出方程,不解方程.)?7.一个水缸原来有水8升,水缸总共可以装水35升,小明每次往缸里加水9升,需要加水多少次才能加满(列出方程,不解方程.)?8.检验下面方程后面括号内所列各数是否为这个方程的解:2(x+2)-5(1-2x)=-13,{x=-1,1}【答案】1.A2.B3.B4.3x=1/2y+75.x-2/3x=26.分析:等量关系是:甲车间生产的台数+乙车间生产的台数=电视机总台数解:设乙车间生产的台数为x台,则甲车间生产的台数是(3x-16)根据题意列方程得x+(3x-16)=1207.分析:设需要加水x次才能加满水,共加水9x升,加上原来缸里的水8升,就是满缸35升水.可以得出方程9x+8=35.解:设需要加水x次才能加满水,根据题意列方程得9x+8=358.解:将x=-1代入方程的两边得左边=2(-1+2)-5[1-2×(-1)]=-13右边=-13因为左边=右边,所以x=-1是方程的解.将x=1代入方程的两边得左边=2(1+2)-5(1-2×1)=11右边=-13因为左边≠右边,所以x=1不是方程的解.四、师生互动,课堂小结这节课主要讲了下面两个问题:1.复习了用列方程的方法来解应用题;2.检验一个数是否为方程的解的方法.1.布置作业:教材第4页“习题6.1”中第1、3题.2.完成练习册中本课时练习.现代数学教学观念要求学生从“学会”向“会学”转变,本课从探究到应用都有意识地营造一个较为自由的空间,让学生能积极地动手、动口、动脑,使学生在学知识的同时形成方法.整个教学过程突出了三个注重:①注重学生参与知识的形成过程,体验应用数学知识解决简单问题的乐趣.②注重师生间、同学间的互动协作、共同提高.③注重知能统一,让学生在获取知识的同时,掌握方法,灵活应用.6.2解一元一次方程1.等式的性质与方程的简单变形第1课时等式的性质1.借助天平的操作活动,发现并理解等式的性质.2.应用等式的性质进行等式的变换.3.经历观察、比较、抽象、归纳等思维活动,发展学生的数学思维能力.4.让学生感受数学的美与乐趣,激发探究的欲望,增强学好数学的信心.【教学重点】等式的性质和运用.【教学难点】引导学生发现并概括出等式的性质.一、情境导入,初步认识同学们,你们还记得“曹冲称象”的故事吗?请同学说说这个故事.小时候的曹冲是多么地聪明啊!随着社会的进步,科学水平的发达,我们有越来越多的方法测量物体的重量.最常见的方法是用天平测量一个物体的质量.我们来做这样一个实验,测一个物体的质量(设它的质量为x).首先把这个物体放在天平的左盘内,然后在右盘内放上砝码,并使天平处于平衡状态,此时两边的质量相等,那么砝码的质量就是所要称的物体的质量.【教学说明】从学生熟悉的生活场景引入,既让学生感到亲切,又能激起学生学习和探究新知的欲望,同时又很自然地引出了课题.让学生从中体验学习与生活的紧密联系.二、思考探究,获取新知请同学来做这样一个实验:如下图,天平处于平衡状态,它表示左右两个盘内物体的质量a、b是相等的.得到:a=b.1.若在平衡天平两边的盘内都添上(或都拿去)质量相等的物体,则天平仍然平衡.得到:a+c=b+ca-c=b-c2.若把平衡天平两边盘内物体的质量都扩大(或缩小)相同的倍数,则天平仍然平衡.得到:ac=bc(c≠0)a/c=b/c(c≠0)观察上面的实验操作过程,回答下列问题:(1)从这个变形过程,你发现了什么一般规律?(2)这几个等式两边分别进行什么变化?等式有何变化?(3)通过上面的操作活动,你能说一说等式有什么性质吗?【教学说明】通过操作途径来发现等式的加减性质,将抽象的算式具体化,降低学生的认知难度,提高课堂效率.同时,通过操作活动更加吸引学生的注意力,调动学生参与课堂的积极性.【归纳结论】等式的基本性质:性质1:等式的两边都加上(或减去)同一个数或式子,等式仍然成立如果a=b,那么a+c=b+c,a-c=b-c.性质2:等式两边都乘或除以同一个数或式子(除数不为0),等式仍然成立.如果a=b,那么ac=bc,a/c=b/c(c≠0).三、运用新知,深化理解1.下列结论正确的是()A.若x+3=y-7,则x+7=y-11B.若7y-6=5-2y,则7y+6=17-2yC.若0.25x=-4,则x=-1D.若7x=-7x,则7=-72.下列说法错误的是()A.若x/a=y/a(a≠0),则x=yB.若x2=y2,则-4x2=-4y2C.若-1/4x=6,则x=-3/2D.若6=-x,则x=-63.已知等式ax=ay,下列变形不正确的是()A.x=yB.ax+1=ay+1C.ay=axD.3-ax=3-ay4.下列说法正确的是()A.等式两边都加上一个数或一个整式,所得结果仍是等式B.等式两边都乘以一个数,所得结果仍是等式C.等式两边都除以同一个数,所得结果仍是等式D.一个等式的左、右两边分别与另一个等式的左、右两边分别相加,所得结果仍是等式5.在方程的两边都加上4,可得方程x+4=5,那么原方程是_________.6.在方程x-6=-2的两边都加上_________,可得x=_________.7.方程5+x=-2的两边都减5得x=_________.8.如果-7x=6,那么x=_________.9.只列方程,不求解.某制衣厂接受一批服装订货任务,按计划天数进行生产,如果每天平均生产20套服装,就比订货任务少100套,如果每天平均生产32套服装,就可以超过订货任务20套,问原计划几天完成?【答案】1.B2.C3.A4.D5.x=16.647.-78.-6/79.解:设原计划x天完成.20x+100=32x-20四、师生互动,课堂小结通过及时的练习对所学新知进行巩固和深化,在练习中,要求学生说出计算的依据,帮助学生巩固等式性质的同时,也提升了说理能力.1.布置作业:教材第5页“练习”.2.完成练习册中本课时练习.本节课教学中,充分利用原有的知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他成为知识的发现者、创造者,培养学生自我探究和实践能力.通过两次实践活动,学生亲自参与了等式的性质发现的过程,真正做到“知其然,知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高.6.3实践与探索第1课时体积和面积问题1.使学生能够找出简单应用题中的已知量、未知量和相等关系,然后列出一元一次方程来解简单应用题,并会根据应用题的实际意义,检查求得的结果是否合理.2.能够利用一元一次方程解决图形面积、体积等相关问题.3.在自主学习的过程中学会理解和体会数学建模思想在实际问题中的作用.4.通过本节的教学,应该达到培养学生体会数学的实际使用价值的目的.【教学重点】利用一元一次方程解决图形面积、体积等相关问题.【教学难点】找问题中的等量关系.一、情境导入,初步认识我们学过一些图形的相关公式,你能回忆一下,有哪些公式?【教学说明】回忆一些图形的有关公式,为本节课学习用一元一次方程解决图形相关问题,找等量关系起到帮助作用.二、思考探究,获取新知问题:用一根长60厘米的铁丝围成一个长方形:(1)如果长方形的宽是长的2/3,求这个长方形的长和宽;(2)如果长方形的宽比长少4厘米,求这个长方形的面积;(3)比较(1)、(2)所得两个长方形面积的大小.还能围出面积更大的长方形吗?解:(1)设长方形的长为x厘米,则宽为2/3x厘米.根据题意,得2(x+2/3x)=60解这个方程,得x=18所以长方形的长为18厘米,宽为12厘米.(2)设长方形的长为x厘米,则宽为(x-4)厘米,根据题意,得2(x+x-4)=60解这个方程,得x=17所以,S=13×17=221(平方厘米).(3)在(1)的情况下S=12×18=216(平方厘米);在(2)的情况下S=13×17=221(平方厘米).还能围出面积更大的长方形,当围出的长方形的长宽相等时,即为正方形,其面积最大,此时其边长为15厘米,面积为225平方厘米.讨论:在第(2)小题中,能不能直接设面积为x平方厘米?如不能,怎么办?如果直接设长方形的面积为x平方厘米,则如何才能找出相等关系列出方程呢?诱导学生积极探索:不能直接设面积为未知数,则需要设谁为未知数呢?那么设未知数的原则又是什么呢?如果我们要算出长方形的面积,就要知道长方形的长和宽.如果我们知道长是多少,根据宽比长少4厘米求出宽,然后就能求出面积.所以现在应该去求出长方形的长或者宽.如果设长方形的长或宽为未知数,其实问题就跟原来的第一小题一样.这体现了要把新问题转换为已知问题的数学思想.探索:将题(2)中的宽比长少4厘米改为3厘米、2厘米、1厘米、0厘米(即长宽相等),长方形的面积有什么变化?【教学说明】让学生积极动手计算,得出:面积会变为222.75,224,224.75,225平方厘米,即面积越来越大.【归纳结论】在周长一定的情况下,长方形的面积在长和宽相等的情况下最大;如果可以围成任何图形,则圆的面积最大.三、运用新知,深化理解1.一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,求长方形的长?2.现有直径为0.8米的圆柱形钢坯30米,可锻造直径为0.4米,长为3米的圆柱形机轴多少根?3.将棱长为20cm的正方体铁块锻造成一个长为100cm,宽为5cm的长方体铁块,求长方体铁块的高度?4.将棱长为6cm的正方体铁块没入盛水量筒中,已知量筒底面积为12cm2,问量筒中水面升高了多少cm?5.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高?(精确到0.1毫米,π≈3.14).6.有一梯形和长方形,如图,梯形的上、下底边的长分别为6cm,2cm,高和长方形的宽都等于3cm,如果梯形和长方形的面积相等,那么图中所标x的长度是多少?【教学说明】图形面积之间相等关系常作为列方程的依据.7.有A、B两个圆柱形容器,如图,A容器内的底面积是B容器内的底面积的2倍,A容器内的水高为10cm,B容器是空的,B容器的内壁高度为22cm.若把A容器内的水倒入B容器,问:水会不会溢出?【教学说明】经过练习,使学生明白在等积类题目中是如何找等量关系的.【答案】1.解:设长方形的长为xcm,则长方形的宽为(13-x)cm.依据题意,得方程x-1=13-x+2解得:x=8答:长方形的长为8cm.2.解:设可锻造直径为0.4米,长为3米的圆柱形机轴x根.依据题意,得方程3×0.22πx=30×0.42π解得:x=40答:可足够锻造直径为0.4米,长为3米的圆柱形机轴40根.3.解:设长方体铁块的高度为xcm.依据题意,得方程100×5x=20×20×20解得:x=16答:长方体铁块的高度为16cm.4.解:设量筒中水面升高了xcm.依据题意,得方程12x=6×6×6x=18答:量筒中水面升高了18cm.5.解:设圆柱形水桶的高为x毫米,依题意,得π·(200/2)2x=300×300×80x≈229.3答:圆柱形水桶的高约为229.3毫米.6.分析:本题有这样一个相等关系:长方形的面积=梯形的面积.我们只要用已知数或x的代数式来表示相等关系的左边和右边,就能列出方程.解:由题意得(6-x)×3=[(2+6)×3]/2解这个方程,得6-x=4,x=2.答:x的长度为2cm.7.分析:A容器内的水倒入B容器后,如果水高不大于B容器的内壁的高度,水就不会溢出,否则,水就会溢出.因此只要求出A容器内的水倒入B容器后的水高.本题有如下的数量关系:A容器内的底面积=B容器内的底面积的2倍倒前水的体积=倒后水的体积设B容器内的底面积为a,那么A容器内的底面积为2a,设B容器的水高为xcm,可利用圆柱的体积公式列方程.解:设A容器内的水倒入B容器后的高度为xcm,根据题意,得2×10=1×x,解得x=20(cm).因为20<22,即B容器内的水高度不大于B容器的内壁的高度,所以水不会溢出.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.1.布置作业:教材第16页“练习”2.完成练习册中本课时练习.现实生活中,蕴含着大量的数学信息,数学在现实生活中有着广泛的应用.解答应用题的过程就是把实际问题抽象成数学问题并进行求解的过程,解方程往往并不困难,难的是如何列出方程,列方程最关键的是如何挖掘问题中的相等关系.等积类应用题的基本关系式是:变形前的体积=变形后的体积.一般利用几何变形前后的体积相等的等量关系来列出方程.第2课时储蓄和利润问题1.掌握储蓄中的数量关系,以及商品利润等有关知识,会用方程解决实际问题.2.通过分析储蓄中的数量关系,以及商品利润等有关知识,经历运用方程解决实际问题的过程,使学生进一步体会方程是刻画现实世界的有效数学模型.3.使学生体验到生活中处处有数学,生活中时时用数学.【教学重点】探索这些实际问题中的等量关系,由此等量关系列出方程.【教学难点】找出能表示整个题意的等量关系.一、情境导入,初步认识1.你们了解教育储蓄吗?了解储蓄存款征收利息税的情况吗?2.了解与银行存款有关的用语:什么是本金?什么是利息?什么是期数?什么是本息和?什么叫利率?什么叫利息率?3.小明爸爸前年存了年利率为3.35%的二年期定期储蓄.今年到期后,所得利息正好为小明买了一只价值48.60元的计算器.问小明爸爸前年存了多少元?你能否列出较简单的方程?【教学说明】让学生了解有关概念,为本节课的内容作铺垫,并明白数学来源于生活,并应用于生活.二、思考探究,获取新知问题1:爸爸为小明存了一个3年期的教育储蓄(3年期的年利率为4.00%).3年后能取5600元,他开始存入了多少元?分析:5600元是什么量?要求的是什么量?相等的关系是什么?等量关系:本息和=本金+利息=本金+本金×年利率×期数解:设他开始存入x元,根据题意,可列方程x(1+4.00%×3)=5600解得x=5000所以他开始存入5000元.你还知道储蓄问题中有哪些计算公式?【归纳结论】利息的计算方法利息=本金×利率×期数本息和=本金+利息=本金+本金×利率×期数=本金×(1+利率×期数)【教学说明】让学生了解有关量之间的关系,为本节课的内容作铺垫.问题2:新学年开始,某校三个年级为地震灾区捐款,经统计,七年级捐款数占全校三个年级捐款总数的2/5,八年级捐款数是全校三个年级捐款数的平均数,已知九年级捐款1946元,求其他两个年级的捐款数.分析:七年级捐款数占全校三个年级捐款总数的2/5,八年级捐款数是全校三个年级捐款数的平均数,七年级和八年级的捐款数都与全校捐款总数有关,如果设全校捐款总数,那么三个年级的捐款数就都知道了,这样就可以列出方程.解:设全校捐款总数为x,则七年级的捐款数为2/5x,八年级捐款数为1/3x,根据题意,可列方程得2/5x+1/3x+1964=x解得x=7365所以,七年级捐款数为:2/5×7365=2946(元)八年级捐款数为:1/3×7365=2455(元)还有没有其它的设未知数的方法?比较一下,哪种设未知数的方法比较容易列出方程?说说你的道理.【教学说明】培养学生分析问题的能力.问题3:商场出售某种文具,每件可盈利2元,为了支援山区,现在按原售价的7折出售给一个山区学校,结果每件仍盈利0.2元.问该文具每件的进价是多少元?分析:基本关系式:进价=标价×折数-利润解:设该文具每件的进价是x元.根据题意得:x=7/10(x+2)-0.2解方程得:x=4答:该文具每件的进价是4元.【归纳结论】利润问题中的等量关系式:商品利润=商品售价—商品进价商品售价=商品标价×折扣数商品利润/商品进价×100%=商品利润率商品售价=商品进价×(1+利润率)【教学说明】明确解决销售问题的关键是利用销售问题的公式,寻找问题中隐藏的相等关系.三、运用新知,深化理解1.某商店有一套运动服,按标价的8折出售仍可获利20元,已知这套运动服的成本价为100元,问这套运动服的标价是多少元?2.小王去新华书店买书,书店规定花20元办优惠卡后购书可享受8.5折优惠.小王办卡后购买了一些书,购书优惠后的价格加上办卡费用比这些书的原价还少了10元钱,问小王购买这些书的原价是多少?3.某小店老板从面包厂购进面包的价格是每个0.6元,按每个面包1.0元的价格出售,卖不完的以每个0.2元于当天返还厂家,在一个月(30天)里,小店有20天平均每天卖出面包80个,其余10天平均每天卖出面包50个,该月小店老板获纯利600元,如果小店老板每天从面包厂购进相同数量的面包,求这个数量是多少?4.一家商店因换季将某种服装打折销售,如果每件服装按标价的5折出售,将亏本20元.如果按标价的8折出售,将盈利40元.求:(1)每件服装的标价是多少元?(2)为保证不亏本,最多能打几折?5.为了准备小敏6年后上大学的学费5000元,她的父母现在就参加了教育储蓄.下面有两种储蓄方式:(1)直接存一个6年期;(2)先存一个3年期的,3年后将本息和自动转存一个3年期.你认为哪种储蓄方式开始存入的本金比较少?【教学说明】学以致用.检验知识的掌握情况.【答案】1.分析:设这套运动服的标价是x元.此题中的等量关系:按标价的8折出售仍可获利20元,即标价的8折-成本价=20元.解:设这套运动服的标价是x元.根据题意得:0.8x-100=20,解得:x=150.答:这套运动服的标价为150元.2.分析:办卡费用加上打折后的书款应该等于书的原价减去节省下来的10元,由此数量关系可列方程进行解答解:设书的原价为x元,由题可得:20+0.85x=x-10,解得:x=200.答:小王购买这些书的原价是200元.3.分析:由题意得,他进的面包数量应至少是50个;等量关系为:(20×进货量+10×50)×每个的利润-[(进货量-50)×10+(进货量-80)×20]×每个赔的钱=600;据此列出方程解可得答案.解:设这个数量是x个.由题意得:(1-0.6)×(20×80+10×50)-(0.6-0.2)×[20(x-80)+10(x-50)]=600解得:x=90.答:这个数量是90个.4.分析:通过理解题意可知本题的等量关系:(1)无论亏本或盈利,其成本价相同;(2)服装利润=服装标价×折扣-成本价.解:(1)设每件服装标价为x元.0.5x+20=0.8x-40,0.3x=60,解得:x=200.故每件服装标价为200元;(2)设至少能打y折.由(1)可知成本为:0.5×200+20=120,列方程得:200×y=120,解得:y=6.故至少能打6折.5.分析:5000=本金+本金×年利率×期数=本金×(1+年利率×期数)解:(1)设开始存入x元.那么列出方程:(1+4.75%×6)x=5000解得x≈3891所以开始存入大约3891元,六年后本息和为5000元.(2)(1+4.00%×3)y×(1+4.00%×3)=5000解得:y≈3986所以开始存入大约3986元,6年后本息和就能达到5000元.因此,按第1种储蓄方式开始存入的本金少.四、师生互动,课堂小结先小组内交流收获和感想,然后以小组为单位派代表进行总结.教师作以补充.1.布置作业:教材第18页“习题6.3.1”中第3题.2.完成练习册中本课时练习.数学源于生活、植根于生活.数学教学就是要从学生的生活经验出发,激发学生学习数学的兴趣,让学生深刻体会到数学是解决生活问题的钥匙.本节课就以实际生活问题为主线,使学生亲身经历将实际问题数学化的过程,充分体现学生的主体地位.经过本节课的教学,了解到学生对利润问题掌握得不够好,公式之间不能灵活地转换,这方面有待加强练习.第3课时行程和工程问题1.使学生理解用一元一次方程解行程问题、工程问题的本质规律.2.通过对“行程问题、工程问题”的分析进一步培养学生用代数方法解决实际问题的能力.3.使学生在自主探索与合作交流的过程中理解和掌握基本的数学知识、技能、数学思想,获得广泛的数学活动经验,提高解决问题的能力.【教学重点】用一元一次方程解决行程问题、工程问题.【教学难点】如何找行程问题中的等量关系.一、情境导入,初步认识1.行程问题中路程、速度、时间三者间有什么关系?相遇问题中含有怎样的相等关系?追及问题中含有怎样的相等关系呢?2.工作量、工作效率、工作时间之间有怎样的关系?【教学说明】通过对这两种常见的问题中公式的复习,为找等量关系打好基础.二、思考探究,获取新知问题1:小张和父亲计划搭乘家门口的公共汽车赶往火车站,去家乡看望爷爷.在行驶了三分之一路程后,估计继续乘公共汽车将会在火车开车后半小时到达火车站.随即下车改乘出租车,车速提高了一倍,结果赶在火车开车前15分钟到达火车站.已知公共汽车的平均速度是40千米/时,问小张家到火车站有多远?吴小红同学给出了一种解法:设小张家到火车站的路程是x千米,由实际时间比原计划乘公共汽车提前了45分钟,可列出方程:解这个方程:x/40-x/120-x/120=3/43x―x―x=90x=90经检验,它符合题意.答:小张到火车站的路程是90千米.张勇同学又提出另一种解法:设实际上乘公共汽车行驶了x千米,则从小张家到火车站的路程是3x千米,乘出租车行使了2x千米.注意到提前的3/4小时是由于乘出租车而少用的,可列出方程:2x/40-2x/80=3/4解这个方程得:x=30.3x=90.所得的答案与解法一相同.讨论:试比较以上两种解法,它们各是如何设未知数的?哪一种比较方便?是不是还有其它设未知数的方法?试试看.【教学说明】两种解题方法,让学生亲身体验设不同的未知数,可列出不同的方程,难易度也不一样.从而得出为了解题方便应选择设适当的未知数的结论.【归纳结论】1.行程问题中基本数量关系是:路程=速度×时间;变形可得到:速度=路程÷时间,时间=路程÷速度.2.常见题型是相遇问题、追及问题,不管哪个题型都有以下的相等关系:相遇:相遇时间×速度和=路程和;追及:追及时间×速度差=被追及距离.问题2:课外活动时李老师来教室布置作业,有一道题只写了“学校校办厂需制作一块广告牌,请来两名工人.已知师傅单独完成需4天,徒弟单独完成需6天”,就停住了.片刻后,同学们带着疑问的目光,窃窃私语:“这个题目没有完呀?要求什么呢?”李老师开口了:“同学们的疑问是有道理的,今天我们就是要请同学们自己来提问.”调皮的小刘说:“让我试一试.”上去添了“两人合作需几天完成?”.有同学反对:“这太简单了!”,但也引起了大家的兴趣,于是各自试了起来:有添上一人先做几天再让另一人做的,有两人先后合作再一人离开的,有考虑两人合作完成后的报酬问题的……李老师选了两位同学的问题,合起来在黑板上写出:现由徒弟先做1天,再两人合作,完成后共得到报酬450元.如果按各人完成的工作量计算报酬,那么该如何分配?试解答这一问题,并与同学一起交流各自的做法.分析:我们可以将工作总量看作“单位1”,根据“工作效率=工作总量/工作时间”可以知道,师傅的工作效率是1/4,徒弟的工作效率是1/6,整项工程分了两个部分:第一部分是徒弟先做的一天,第二部分是师徒两人合作完成的,而合作的时间我们不知道,所以应设合作的时间为x,根据工作总量可列出方程.从而求出他们各自工作的量,这样就可以求出他们得到的报酬.解:设两人合作的时间是x天,根据题意可列出方程:1/6+(1/6+1/4)x=1解得:x=2经检验,它符合题意.所以,徒弟工作时间为3天,完成工作总量的1/6×3=1/2;师傅工作时间为2天,完成工作总量的1/4×2=1/2.因为他们完成的工作量一样,所以报酬也应该一样多,都是270元.你还能提出其它的问题吗?试一试,并解答这些问题.【教学说明】给学生充足的时间,发挥他们的想象力,锻炼他们的创新能力和思维能力.【归纳结论】工程问题中的三个量,根据工作量=工作效率×工作时间,已知其中两个量,就可以表示第三个量.两人合作的工作效率=每个人的工作效率的和.三、运用新知,深化理解1.有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二座铁桥比过第一座铁桥需多5秒,又知第二座铁桥的长度比第一座铁桥长度的2倍短50米,试求各铁桥的长.2.一艘船由A地开往B地,顺水航行需5小时,逆水航行要比顺水航行多用50分钟.已知船在静水中每小时走12千米,求水流速度.3.一条环形跑道长400米,甲、乙两人练习跑步,甲每秒钟跑6米,乙每秒钟跑4米.(1)两人同时、同地、背向出发,经过多少时间,两人首次相遇?(2)两人同时、同地、同向出发,经过多少时间,两人首次相遇?4.甲、乙两队合挖一条水渠,5天可以完成.如果甲队独挖8天可以完成,那么乙队独挖几天可以完成?5.将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?【教学说明】通过练习,使学生掌握应用一元一次方程解决实际问题的步骤和方法.【答案】1.解:设第一座铁桥的长为x米,那么第二座铁桥的长为(2x-50)米,过完第一座铁桥所需的时间为x/600分.过完第二座铁桥所需的时间为(2x-50)/600分.依题意,可列出方程x/600+5/60=(2x-50)/600解方程x+50=2x-50得x=100∴2x-50=2×100-50=150答:第一座铁桥长100米,第二座铁桥长150米.2.分析:在水流问题中:船的顺水速度=船的静水速度+水流速度,船的逆水速度=船的静水速度-水流速度.等量关系:船顺水航行的路程=船逆水航行的路程.解:设水流速度为x千米/时.根据题意,得顺水航行的速度为(12+x)千米/时,逆水航行的速度为(12-x)千米/时,5(12+x)=(5+50/60)(12-x)60+5x=35/6×12-35/6x65/6x=10x=12/13.答:水流速度为12/13千米/时.3.分析:(1)同时、同地、背向,甲、乙二人第一次相遇时,甲和乙共跑了一圈(即400米),等价于相遇问题,相等关系:甲走的路程+乙走的路程=400米.(2)同时、同地、同向,甲、乙二人第一次相遇时,甲比乙多跑了一圈(即400米),等价于追及问题,等量关系:甲走的路程-乙走的路程=400米.解:(1)设两人同时、同地、背向出发,经过x秒后两人首次相遇,根据题意,得6x+4x=400,解方程,得x=40.答:两人同时、同地、背向出发,经过40秒后两人首次相遇.(2)设两人同时、同地、同向出发,经过x秒后两人首次相遇,根据题意,得6x-4x=400,解方程,得x=200.答:两人同时、同地、背向出发,经过200秒后两人首次相遇.4.分析:这一工程问题求的是工作时间.只要先求出乙的工作效率,根据:工作量=工作效率×工作时间,就能列出求乙的工作时间的方程.解:设乙队单独挖需x天完成,由于两队合做每天完成的工作量等于各队每天完成的工作量的和,也就是说两队合做的工作效率等于各队单独的工作效率的和,所以乙队的工作效率为:1/5-1/8.根据题意,得(1/5-1/8)x=1解这个方程,得3/40x=1,x=40/3.答:乙队独挖40/3天可以完成.5.解:设甲、乙一起做还需x小时才能完成工作.根据题意,得1/6×1/2+(1/6+1/4)x=1.解这个方程,得x=11/5.11/5小时=2小时12分.答:甲、乙一起做还需2小时12分才能完成工作.四、师生互动,课堂小结本节课你学习了哪些知识,掌握了哪些方法?请相互交流.1.布置作业:教材第20页“习题6.3.2”中第3、4题.2.完成练习册中本课时练习.本节课的教学难点是行程问题,而行程问题又分几种类型,如:相遇、追及、同向、逆向、水流、环行问题等.环行问题的基本特征是路径呈环状或为环线的一部分.事实上,这类问题也有“相遇”与“追及”之分:(1)若同地出发,反向而行,则每次相遇,两者的行程之和等于环形的周长.(2)若同地出发,同向而行,则每次追及,两者的行程之差等于环行道的周长,或表示为快者的行程=慢者的行程+环形周长.此外,若是同时出发,则相遇(或追及)时,两者行走的时间相等.在水流问题中:船的顺水速度=船的静水速度+水流速度,船的逆水速度=船的静水速度-水流速度.章末复习1.了解一元一次方程的概念,根据方程的特征,灵活运用一元一次方程的解法求一元一次方程的解.2.能利用一元一次方程解决实际问题.3.通过解决问题的过程对本章主要知识进行梳理回顾,使学生认识本章的知识体系和方法体系.4.通过解决问题,让学生体会成功的乐趣,从而增强学生学好数学的兴趣和信心.【教学重点】解一元一次方程.【教学难点】实际问题与一元一次方程的应用.一、知识框图,整体把握【教学说明】引导学生回顾本章知识点,使学生系统地了解本章知识及它们之间的关系.二、回顾思考,梳理知识1.方程的解:使方程左右两边的值相等的未知数的值,就是方程的解.2.等式的基本性质:性质1:等式的两边都加上(或减去)同一个数或式子,等式仍然成立.如果a=b,那么a+c=b+c,a-c=b-c.性质2:等式两边都乘或除以同一个数或式子(除数不为0),等式仍然成立.如果a=b,那么ac=bc,a/c=b/c(c≠0).3.方程的变形方法:方程的两边都加上或(都减去)同一个数或同一个整式,方程的解不变.方程两边都乘以(或都除以)同一个不为零的数,方程的解不变.方程中的某些项改变符号后,从方程的一边移到另一边的变形叫做移项.4.一元一次方程的概念:只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是1的方程叫做一元一次方程.5.解一元一次方程的一般步骤为:去分母,去括号,移项,合并同类项,系数化为1.6.等积类应用题的基本关系式是:变形前的体积=变形后的体积.7.利息的计算方法:利息=本金×利率×期数本息和=本金+利息=本金+本金×利率×期数=本金×(1+利率×期数)8.利润问题中的等量关系式:商品利润=商品售价-商品进价商品售价=商品标价×折扣数商品利润/商品进价×100%=商品利润率商品售价=商品进价×(1+利润率)9.行程问题中基本数量关系是:路程=速度×时间,变形可得到:速度=路程÷时间,时间=路程÷速度.常见题型是相遇问题、追及问题,不管哪个题型都有以下的相等关系:相遇:相遇时间×速度和=路程和,追及:追及时间×速度差=被追及距离.10.工程问题中的等量关系式:工作量=工作效率×工作时间.11.运用方程解实际问题的一般过程:(1)审题:分析题意,找出题中的各个量及其关系;(2)设元:选择一个适当的未知数用字母表示;(3)列方程:根据相等关系列出方程;(4)解方程:求出未知数的值;(5)检验:检验求出的值是否正确或符合实际情形;(6)答:写出答案.【教学说明】通过问题解决的过程对本章主要知识进行梳理回顾,使学生体会本章的知识体系和方法体系三、典例精析,复习新知例1方程y-10=-4y的解是(B)A.y=1B.y=2C.y=3D.y=4例2给出下面四个方程及变形:(1)4x+10=0,变形为2x+5=0;(2)x+7=5-3x,变形为4x=12;(3)2/3x=5,变形为2x=15;(4)16x=-8,变形为x=-2;其中方程变形正确的编号组为(C)A.(1)(2)B.(1)(2)(3)(4)C.(1)(3)D.(1)(2)(3)例4解方程5x-7+3x=6x+1.解:5x+3x-6x=1+72x=8x=4解:2(1-2x)+4(x+1)=12-3(2x+1)2-4x+4x+4=12-6x-36x=3x=1/2例6某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分,已知某人有5道题未做,得了103分,则这个人选错了多少题?分析:等量关系是:选对所得的分-选错所扣的分=最后的得分解:设这人选错了x道题,则选对了(50-5-x)道.3(50-5-x)-x=103解这个方程得x=8.答:这个人选错了8道题.例7某校学生进行军训,以每小时5千米的速度去执行任务,出发4小时12分钟后,学校军训指挥部派通讯员骑摩托车追赶学生队伍传达新任务,用了36分钟赶上了队伍,求摩托车的速度.分析:等量关系是:学生队伍的行进路程=摩托车行驶的路程解:设摩托车的速度为每小时x千米.根据题意,列方程得解这个方程得x=40.答:摩托车的速度为每小时40千米.【教学说明】学生独立思考并完成,师生评价,给予学生充分的肯定,鼓励学生自我展示.四、复习训练,巩固提高1.若关于x的方程3(x-1)+a=b(x+1)(a,b为常数)是一元一次方程,则(D)A.a,b为任意有理数B.a≠0C.b≠0D.b≠32.方程|2x-1|=4x+5的解是(C)A.x=-3或x=-2/3B.x=3或x=2/3C.x=-2/3D.x=-33.解方程3/4×(4/3x-1)=3,下列变形中,较简捷的是(B)A.方程两边都乘以4,得3(4/3x-1)=12B.去括号,得x-3/4=3C.两边同除以3/4,得4/3x-1=4D.整理,得(4x-3)/4=34.解方程(1)5(x-4)-7(7-x)-9=12-3(9-x)解:5x-20-49+7x-9=12-27+3x5x-3x+7x=12-27+20+49+99x=63x=75(10x-20)-2(10x+10)=3050x-100-20x-20=3050x-20x=30+100+2030x=150x=5(3)x-2[x-3(x-1)]=8解:x-2[x-3x+3]=8x-2x+6x-6=8x-2x+6x=8+65x=14x=2.85.某校组织学生春游,如果包租相同的大巴3辆,那么就有14人没有座位;如果多包租1辆,那么就多了26个空位,问春游的总人数是多少?分析:本题若直接设总人数则较难列出方程,所以可以改设每辆大巴的座位数为x较方便.等量关系为:两种方案中的总人数相同.解:设每辆大巴的座位数为x人,根据题意列方程得3x+14=4x-26解这个方程得x=40所以总人数为:3×40+14=134(人)答:春游的总人数是134人.6.某工人原计划用26天生产一批零件,工作两天后,因改变了操作方法,每天比原来多生产5个零件,结果提前4天完成任务,问原来每天生产多少个零件?这批零件有多少个?分析:本题利用“前2天的工作量+后20天的工作量=工作总量”来列等式,而“工作量=工作效率×工作时间”.解:设改进操作方法前每天生产零件x个,根据题意,得2x+(26-2-4)(x+5)=26x解得x=25.所以,这些零件有26×25=650(个).答:原来每天生产零件25个,这批零件有650个.7.一队学生去校外进行军事野营训练.他们以5千米/时的速度行进,走了18分钟的时候,学校要将一个紧急通知传给队长.通讯员从学校出发,骑自行车以14千米/时的速度按原路追上去.通讯员用多少时间可以追上学生队伍?分析:(1)细审题意:学生队伍出发18分钟后,通讯员才开始出发,并且与学生队伍同向而行.通讯员追上队伍时,通讯员所走的距离和学生队伍所走的距离相等,但是在同一时间里(从通讯员出发到追上队伍),他们所走的路程是不同的,通讯员比学生队伍多走了5×18/60千米,设通讯员用x小时可以追上学生队伍(2)找等量关系:追上学生队伍时,通讯员走的路程=学生队伍走的路程.解:设通讯员用x小时可以追上学生队伍,根据题意,得14x=5×18/60+5x.解这个方程,得x=1/6(小时)=10(分钟)答:通讯员用10分钟可以追上学生队伍.【教学说明】学生独立作答,自我检验,提升信心.五、师生互动,课堂小结通过本节课的学习,你有哪些收获?还有哪些疑惑?请与同学交流.1.布置作业:教材第21~22页“复习题”中第4、5、6、7、8、9、16、17题.2.完成练习册中本课时练习.本节课的教学中,老师分层次设置练习题,逐步突破难点.初一学生在解应用题时,主要存在三个方面的困难:(1)抓不住相等关系;(2)找出相等关系后不会列方程;(3)习惯用算术解法,对用代数方法分析应用题不适应.其中,第一个方面是主要的,解决了它,另两个方面就都好解决了.重点训练学生找相等关系列方程;要求学生独立设未知数列方程,并能突破用算术解法解应用题的思维定势,学会通过阅读题目、理解题意、进而找出等量关系、列出方程解决问题的方法.第7章一次方程组7.1二元一次方程组和它的解1.理解二元一次方程、二元一次方程组和它的解的含义.2.会检验一对数是不是某个二元一次方程组的解.3.能根据问题情境列二元一次方程组.4.通过概念的形成过程,发展分析问题、解决问题、归纳概括的能力;在经历分析实际问题数量关系的过程中,体会方程是刻画现实世界的数学模型.5.通过对情境问题的观察、思考,激发学习数学的好奇心和求知欲,并在运用数学知识解答问题的过程中获取成功的喜悦,建立学习的自信心.【教学重点】二元一次方程组和它的解的概念.【教学难点】二元一次方程组的解的概念.情境导入,初步认识暑假里,《新晚报》组织了“我们的小世界杯”足球邀请赛.勇士队在第一轮比赛中共赛9场,得17分.比赛规定胜一场得3分,平一场得1分,负一场得0分.勇士队在这一轮中只负了2场,那么这个队胜了几场?又平了几场呢?【教学说明】从学生感兴趣的话题引入,激发学生的学习兴趣.二、思考探究,获取新知1.能否用我们已经学过的知识来解决这个问题?可以用一元一次方程来求解.设勇士队胜了x场,因为它共赛了9场,并且负了2场,所以它平了(9-x-2)场.根据得分规则和它的得分,我们可以列出一元一次方程:3x+(9-x-2)=17.解这个方程可得x=5.所以勇士队胜了5场,平了2场.【教学说明】一元一次方程的复习与巩固,为学习二元一次方程组提供了素材.2.由上面解答可知,这个问题可以用一元一次方程来求解,而我们很自然地会提出这样一个问题:既然要求胜的场数和负的场数,而这其中有两个未知数,那么能不能同时设出这两个未知数呢?师生共同探讨:不妨就设勇士队胜了x场,负了y场.在下表的空格中填入数字或式子.根据填表的结果可知:x+y=7①3x+y=17②观察这两个式子,和我们以前所学的一元一次方程有什么不同?它们有什么共同点?引导学生观察方程①、②的特点,并与一元一次方程作比较,可知:这两个方程都含有两个未知数,并且未知数的次数都是1.【归纳结论】含有两个未知数,并且未知数的次数是1的方程叫做二元一次方程.把两个二元一次方程用一个大括号“{”合在一起,就组成了一个二元一次方程组.【教学说明】注意:方程组中的各方程中,同一个字母必须代表同一个量.3.什么是方程的解?答:能使方程左、右两边的值相等的未知数的值叫做方程的解.由算术法我们已得到答案,勇士队胜了5场,平了2场,即x=5,y=2.x=5与y=2既满足方程①,又满足方程②,我们就说x=5与y=2是二元一次方程组的解,并记作.【归纳结论】一般地,使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.【教学说明】注意:(1)未知数的值必须同时满足两个方程时,才是方程组的解.若取x=4,y=3时,它们能满足方程①,但不满足方程②,所以它们不是方程组的解.(2)二元一次方程组的解是一对数,而不是一个数,所以必须把x=5与y=2合起来,才是方程组的解.4.某校现有校舍20000m2,计划拆除部分旧校舍,改建新校舍,使校舍总面积增加30%,同时使建造新校舍的面积为被拆除的旧校舍面积的4倍.若设应拆除旧校舍xm2,建造新校舍ym2,请你根据题意列一个方程组.分析:由建造新校舍的面积为被拆除的旧校舍面积的4倍,我们马上可得出方程y=4x.拆除部分旧校舍,改建新校舍后,校舍总面积增加30%,其增加量应当对应到新校舍面积与拆除的旧校舍面积的差值,所以我们可列出另一方程y-x=20000×30%.解:设应拆除旧校舍xm2,建造新校舍ym2,根据题意列出方程组:三、运用新知,深化理解1.下列方程中,属于二元一次方程的是()A.xy-7=1B.2x-1=3y+1C.4x-5y=3x-5yD.3x-=12.下列方程组是二元一次方程组的是()3.方程组的解是()4.关于m,n的两个方程2m-n=3与3m+2n=1的公共解是()5.由x+2y=4,得到用y表示x的式子为x=;得到用x表示y的式子为y=.6.若是二元一次方程ax+by=-2的一个解,则2a-b-6的值是.7.已知是一个二元一次方程的解,试写出一个符合条件的二元一次方程组.8.根据下列语句,分别设适当的未知数,列出二元一次方程或方程组.(1)甲数的13比乙数的2倍少7;(2)摩托车的时速是货车的32倍,它们的速度之和是200km/h;(3)某种时装的价格是某种皮装价格的1.4倍,5件皮装比3件时装贵700元.【教学说明】进一步理解二元一次方程组和它的解概念,突破教学难点.【答案】1.B2.D3.B4.B5.4-2y,6.-87.解:答案不唯一,现举一例:∵x=2,y=3,∴x+y=2+3=5,2x+y=2×2+3=7,∴就是所求的一个二元一次方程组.8.解:(1)设甲数为x,乙数为y,则x+7=2y.(2)设摩托车的速度为xkm/h,货车的速度为ykm/h,则(3)设时装的价格为x元/件,皮装的价格为y元/件,则四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.1.布置作业:教材第26页“习题7.1”中第1、2题.2.完成练习册中本课时练习.本节从学生感兴趣的问题入手,意在让学生经历一个实际背景,激发学生自觉探究数学问题,体验发现问题的乐趣.学生通过自己去分析、探索、认识二元一次方程组,初步体会用二元一次方程组来刻画实际问题中的数量关系.在本节课的学习中让学生运用自主学习、观察猜想、合作交流、抽象概括、总结归纳等方法.学生的角色从学会转变为会学,本节课,学生不是停留在学会课本知识的层面上,而是与老师一起站在探究者的角度深入其境,体验探究的氛围与真谛.7.2二元一次方程组的解法第1课时代入消元法1.会用代入消元法解简单的二元一次方程组.2.通过探索代入消元法解二元一次方程的过程,理解代入消元法的基本思想所体现的化归思想方法.3.通过提供适当的情境资料,吸引学生的注意力,激发学生的学习兴趣;在合作讨论中学会交流与合作,培养良好的数学思想,逐步渗透类比、化归的意识.【教学重点】用代入消元法解二元一次方程组.【教学难点】探索如何用代入消元法解二元一次方程组,感受“消元”思想.一、情境导入,初步认识1.复习提问:什么叫做二元一次方程、二元一次方程组、二元一次方程组的解?2.回顾上节课中的问题:设应拆除旧校舍xm2,建造新校舍ym2,那么根据题意可列出方程组:问:怎样求出这个二元一次方程组的解?【教学说明】通过学生身边熟悉的事情,建构“问题情境”,使学生感受到问题是“现实的、有意义的、富有挑战性的”,让学生在不自觉中走进自己的最近“发展区”,愉悦地接受教学活动.二、思考探究,获取新知1.我们知道此题可以用一元一次方程来求解,即设应拆除旧校舍xm2,则建造新校舍4xm2,根据题意可得到4x-x=20000×30%.对于一元一次方程的解法我们是非常熟悉的.那么我们如果能将解二元一次方程组转化为解一元一次方程,我们的问题不就可以解决了吗?可是如何来转化呢?引导学生观察方程组和相应的一元一次方程间的联系.在方程组中的方程②y=4x,把它代入方程①中y的位置,我们就可以得到一元一次方程4x-x=20000×30%.通过“代入”,我们消去了未知数y,得到了一元一次方程,这样就可以求解了.解方程得:x=2000,把x=2000代入②得y=8000.所以.答:应拆除旧校舍2000m2,建造新校舍8000m2.2.解方程组:与上面的方程组不同,这里的两个方程中,没有一个是直接用一个未知数表示另一个未知数的形式,这时怎么办呢?由学生观察后得出结论:可以将方程①变形成为用x来表示y的形式,即y=7-x,然后再将它代入方程②,就能消去y,得到一个关于x的一元一次方程.解:由①得y=7-x③.将③代入②,得3x+7-x=17.即x=5.将x=5代入③,得y=2.所以.(可以再依据二元一次方程组的定义来验证得出的解是否正确.)【归纳结论】由上面的例题可看出,我们是通过“代入”消去一个未知数,方程转化为一元一次方程来解的.这种解法叫做代入消元法,简称代入法.解方程组的基本思想方法就是“消元”.3.解方程组分析:观察分析此方程组与2题中的方程组在形式上的差别.易知2题的方程组中有未知数系数的绝对值是1的方程,而此方程组中两个方程未知数的系数都不是1,这时怎么办呢?能不能将其中一个方程适当变形,用一个未知数来表示另一个未知数?显然,这个变形是能够办到的.我们有两个办法,一个是某个方程两边同除以某个未知数的系数,使这个未知数的系数化1,化成1题的形式;另一个是将某个方程的某一个未知数移到方程的一边,其他各项移到另一边,再把这个未知数的系数化1,从而达到“用一个未知数来表示另一个未知数”的目的.显然第二种方法更为直接,因而考虑方程中各项的系数,选择一个系数比较简单的方程.易见方程①中x的系数比较简单,所以将方程①中的x用y来表示.解:由①,得x=4+y③.将③代入②,得:3(4+y)-8y-10=0,y=-0.8.将y=-0.8代入③,得x=1.2.所以.【教学说明】这里是先消去x,得到关于y的一元一次方程,可不可以先消去y呢?(让学生试一试,并比较两种解法的优劣.易知先消去x使变形后的方程比较简单且代入后化简比较容易).由上面的解题过程,你能总结出用代入法解二元一次方程组的步骤吗?【归纳结论】代入法解二元一次方程组的方法:1.将方程组中的一个方程的一个未知数用含另一未知数的式子表示.2.把得到的式子代入另一个方程,得到一元一次方程,并求解.3.把求得的解代入方程,求另一未知数的解.三、运用新知,深化理解1.方程-x+4y=-15下面是用含y的代数式表示x是()A.-x=4y-15B.x=-15+4yC.x=4y+15D.x=-4y+152.将y=-2x-4代入3x-y=5可得()A.3x-2x+4=5B.3x+2x+4=5C.3x+2x-4=5D.3x-2x-4=53.用代入法解方程组有以下过程:(1)由①得x=③;(2)把③代入②得3×-5y=5;(3)去分母得24-9y-10y=5;(4)解之得y=1,再由③得x=2.5,其中错误的一步是()A.(1)B.(2)C.(3)D.(4)4.把下列方程写成用含x的代数式表示y的形式:(1)3x+4y-1=0;(2)5x-2y+9=0.5.解下列方程组6.在解方程组时,小明把方程①抄错了,从而得到错解,而小亮却把方程②抄错了,得到错解,你能求出正确答案吗?原方程组到底是怎样的?【教学说明】通过不同题型考察代入法解方程组,从而加强对所学知识点的巩固提高,加深对所学知识的理解与应用.【答案】1.C2.B3.C4.分析:即将方程作适当的变形,把含有y的项放在方程的一边,其他的项移到方程另一边,再把y的系数化1.解:(1)y=;(2)y=.5.(1)解:由②得y=4x-5③把③代入①得2x+3(4x-5)=-1,解得x=1,把x=1代入③,得y=-1.所以原方程组的解为.(2)解:由①得方程y=1-x③;将③代入②消去y,得2x+3(1-x)=5;x=-2;把x=-2代入③,得y=3;所以方程组的解是.(3)解:由①得x=3+2y③将③代入②,得3(3+2y)+2y=17;解得y=1;把y=1代入③,得x=5;所以原方程组的解为(4)解:整理得由①得x=3+4y③将③代入②,得15(3+4y)+8y=45;解得y=0.把y=0代入③,得x=3;所以原方程组的解为.6.解:把代入方程②,得b+7a=19.把代入方程①,得-2a+4b=16.解方程组,得所以原方程组为,解得四、师生互动,课堂小结先小组内交流收获和感想,然后以小组为单位派代表进行总结.教师作以补充.1.布置作业:教材第30页“练习”.2.完成练习册中本课时练习.本课按照“身边的数学问题引入——寻求一元一次方程的解法——探索二元一次方程组的代入消元法——典型例题——归纳代入法的一般步骤”的思路进行设计.在教学过程中,充分调动学生的主观能动性和发挥教师的主导作用,坚持启发式教学.教师创设有趣的情境,引发学生自觉参与学习活动的积极性,使知识发现过程融于有趣的活动中.重视知识的发生过程.将设未知数列一元一次方程的求解过程与二元一次方程组相比较,从而得到二元一次方程组的代入(消元)解法,这种比较,可使学生在复习旧知识的同时,使新知识得以掌握,这对于学生体会新知识的产生和形成过程是十分重要的.第2课时加减消元法1.会阐述用加减法解二元一次方程组的基本思路.通过“加减”达到“消元”的目的,从而把二元一次方程组转化为一元一次方程来求解;2.会用加减法解简单的二元一次方程组.3.在探究的过程中,获得用加减法解二元一次方程组的初步经验.4.培养学生观察、归纳、类比、联想以及分析问题、解决问题的能力.【教学重点】学会用加减法解简单的二元一次方程组.【教学难点】准确灵活地选择和运用加减消元法解二元一次方程组.一、情境导入,初步认识1.解二元一次方程组的基本思路是什么?2.用代入法解方程组的关键是什么?3.你会解下面这个方程组吗?【教学说明】由问题导入新课,既复习了旧知识,又引出了新课题,最后设置悬念,既增强了学生的学习兴趣,又激发了学生的学习热情,对学生探究新知识起到很好的推动作用,让学生发表自己的见解,既培养了学生的数学语言表达的能力,又发挥了学生学习的主动性,使他们的注意力始终集中在课堂上.二、思考探究,获取新知1.观察方程组:(1)未知数x的系数有什么特点?(2)怎么样才能把这个未知数x消去?这样做的依据是什么?(3)把两个方程的左边与左边相减,右边与右边相减.你得到了什么结果?9y=-18,(消去了未知数x,达到了消元的目的)y=-2.把y=-2代入(1),得3x+5×(-2)=5,x=5.所以.从上面的解答过程中,你发现了二元一次方程组的新的解法吗?【教学说明】把未知的知识交给学生,让他们在合作学习的过程中,体会到可以用自己的能力去解决新问题,探索新方法,从而获得成功的喜悦.这样一来又大大调动了学生的学习热情,培养和提高了学生学习的主动性和合作精神,同时又使学生的观察力和语言表达能力得到了锻炼.2.解方程组:看一看:y的系数有什么特点?想一想:先消去哪一个比较方便呢?用什么方法来消去这个未知数呢?解:(1)+(2)得,7x=14,x=2.把x=2代入(1)得,6+7y=9,7y=3,y=.所以【归纳结论】将两个方程相加(或相减)消去一个未知数,将方程组转化为一元一次方程来解.这种解法叫做加减消元法,简称加减法.3.讨论:用加减法解二元一次方程组的时候,什么条件下用加法、什么条件下用减法?【教学说明】这个问题,可使学生明确使用加减法的条件,体会在某些条件下使用加减法的优越性,不仅强化了学生对概念的理解,又培养了学生勤于动脑,勤于探究的好习惯,还可为之后灵活运用加减法解二元一次方程组打下良好的基础.【归纳结论】当方程组中同一未知数的系数互为相反数时,我们可以把两方程相加,当方程组中同一未知数的系数相等时,我们可以把两方程相减,从而达到消元的目的.4.解方程组:问题:能直接相加减消掉一个未知数吗?如何把同一未知数的系数变成一样呢?解:方法一:利用加减消元法消去未知数y.(1)×3,(2)×2得,(3)+(4)得,19x=114,x=6.把x=6代入(2)得,30+6y=42,y=2.所以.思考:能否先消去x再求解?方法二:利用加减消元法消去未知数x.解:(1)×5,(2)×3,得(4)-(3)得38y=76y=2把y=2代入(2)得,5x+12=42x=6所以.当同一未知数的系数即不相等也不互为相反数,该如何求解呢?【归纳结论】一般步骤是:(1)方程组的两个方程中,如果同一未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等;(2)把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;(3)解这个一元一次方程;(4)将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解.三、运用新知,深化理解1.若关于x、y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值为()2.已知方程组中,x、y的值相等,则m等于()A.1或-1B.1C.5D.-53.解下列方程组:(3)(4)4.已知关于x,y的二元一次方程y=kx+b的解有.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?【教学说明】通过这一系列有层次有梯度形式多样的练习,使学生可以灵活熟练地选择准确的加减法完成对二元一次方程组的求解,并能在解解答的过程中摸索运算技巧,培养计算能力与观察问题、分析问题与解决问题的能力.【答案】1.B2.B3.(1)解:①-②得,-x=-2,解得x=2,把x=2代入①得,2+y=1,解得y=-1.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.1.布置作业:教材第34页“练习”.2.完成练习册中本课时练习.用加减法消元的关键是根据方程组中同一未知数的系数的某种特点灵活消元;加减法、代入法都是解二元一次方程组的基本方法,虽然消元的途径不同,但是它们的目的相同,即把“二元”转化为“一元”,可谓“异曲同工”.*7.3三元一次方程组及其解法1.了解三元一次方程组的概念.2.会用“代入”“加减”把三元一次方程组化为“二元”、进而化为“一元”方程来解决.3.能根据三元一次方程组的具体形式选择适当的解法.4.让学生认识三元一次方程组的求解关键在于“消元”,进一步熟练掌握“代入”“加减”消元的方法.5.让学生感受把新知转化为已知,把不会的问题转化为学过的问题,把难度大的问题转化为难度较小的问题这一化归思想,体会数学学习的方法.【教学重点】三元一次方程组的解法及“消元”思想.【教学难点】根据方程组的特点,选择消哪个元,选择用什么方法消元.一、情境导入,初步认识前面我们学习了二元一次方程组及其解法——消元法.有些有两个未知数的问题,可以列出二元一次方程组来解决,实际上,有不少问题含有更多未知数,我们来看下面的问题:在足球比赛中,胜一场积3分,平一场积1分,负一场及0分,勇士队参加了10场比赛,共得18分.已知勇士队在比赛中胜的场数正好等于平与负的场数之和,那么勇士队在比赛中胜、平、负的场次各是多少?对于这个问题,我们可以用二元一次方程组来解决.这个问题中有三个未知数,如果我们设三个未知数,你能列出几个方程?它们组成一个方程组,你能解出来吗?【教学说明】通过创设问题情境,引入新课,使学生了解三元一次方程组的概念及本节课要解决的问题.二、思考探究,获取新知对于上面的问题,设胜、负、平的场次分别为x、y、z,分别将已知条件直接“翻译”出来,列出方程,并将它们写成方程组的形式,得:像这样的方程组称为三元一次方程组.怎样解三元一次方程组呢?回忆我们在解二元一次方程组时,其基本思想是什么?你会用几种方法解二元一次方程组?对于三元一次方程组,我们能不能先消掉一个或两个未知数,转化为二元一次方程组或一元一次方程求解.将③代入①和②中得:思考:上面的三元一次方程组能否用加减消元法求解?或者能否利用方程③,直接代入方程①中的y+z?比较一下,哪种方法更简便?由此你能总结出解三元一次方程组的步骤吗?【归纳结论】解三元一次方程组的步骤:1.利用代入法或加减法先消掉一个未知数,将三元一次方程组转化为二元一次方程组.2.解二元一次方程组.3.将二元一次方程组的解代入其中一个方程,求出第三个未知数.【教学说明】结合情境问题中列出的方程组,类比前面所学二元一次方程组的解法,得到解三元一次方程组的整体思路.三、运用新知,深化理解1.解方程组,若要使运算简便,消元的方法应选取()A.先消去xB.先消去yC.先消去zD.以上说法都不对2.若方程组的解x和y的值互为相反数,则k的值等于()A.0B.1C.2D.36.有一个三位数,个位数字是百位数字的3倍,十位数字比百位数字大5,若将此数的个位数与百位数互相对调,所得新数比原数的2倍多35,求原数.7.某农场300名职工耕种51公顷土地,计划种植水稻、棉花和蔬菜,已知种植植物每公顷所需的劳动力人数及投入的设备资金如下表:【教学说明】检查学生是否掌握三元一次方程组的求解.【答案】1.B2.C3.C6.解:设个位数字为x,十位数字为y,百位数字为z,7.解:设种植水稻、棉花和蔬菜的面积分别为x公顷,y公顷,z公顷,根据题意得答:种植水稻、棉花和蔬菜的面积分别为15公顷,20公顷,16公顷.四、师生互动,课堂小结1.三元一次方程组的概念.2.三元一次方程组的解法.注意选好要消的“元”,选好要消的“法”.3.谈谈求解多元一次方程组的思路.1.布置作业:教材第41页“习题7.3”中第1、2题.2.完成练习册中本课时练习.通过本节课的学习能让学生在本节课上了解到三元一次方程组的概念,掌握用“代入法”“加减法”对三元一次方程组进行消元,并逐步领会如何选择适合的方法,以提高解题效率.原来本环节的目的是让学生熟练掌握三元一次方程组的解法和调动学生学习的积极性,但因为计算结果比较复杂,学生不敢肯定自己动手计算结果,从而影响了效果.7.4实践与探索1.通过对实际问题的探索与解决,逐步形成结合具体的事例发现并提出数学问题的能力.2.学会用二元一次方程组解决简单的实际问题.3.通过学生积极思考、互相讨论,探索事物之间的数量关系,形成方程模型.4.通过在解决实际问题的过程中,同伴之间的讨论、交流与合作,体会与他人合作的重要性,逐步形成积极参与讨论、敢于发表见解并尊重与理解他人见解的意识.【教学重点】1.学生积极参与讨论和探究问题;2.抽象出数学模型.【教学难点】用二元一次方程组解决简单的实际问题.情境导入,初步认识通过前面的学习,你能说出列二元一次方程组解决实际问题的步骤吗?其中什么是关键?【教学说明】采用提问的形式,让学生对列二元一次方程组解决实际问题的步骤进行复习,为本节课作铺垫.思考探究,获取新知问题1:要用20张白卡纸做长方体的包装盒,准备把这些白卡纸分成两部分,一部分做侧面,另一部分做底面,已知每张白卡纸可以做2个侧面,或者3个底面,如果1个侧面和2个底面可以做成一个包装盒,那么如何分才能使做成的侧面和底面正好配套?请同学们独立思考,试解上面的问题,然后与你的同伴讨论、交流,探索解题进行方法.学生有困难,教师可加以引导:1.本题有哪些已知量?(1)共有白卡纸20张;(2)一张白卡纸可以做盒身2个或盒底盖3个;(3)1个盒身与2个盒底盖配成一套.2.求什么?用几张白卡纸做盒身?几张白卡纸做盒底盖?3.若设用x张白卡纸做盒身,y张白卡纸做盒底盖,那么可做盒身多少个?盒底盖多少个?(2x个盒身,3y个盒底盖)4.找出2个等量关系.(1)用做盒身的白卡纸张数+用做盒底盖的白卡纸张数=20;(2)由已知(3)可知盒底盖的个数应该是盒身的2倍,才能使盒身与盒底盖正好配套.由于解为分数,所以如果不允许剪开,则只能做成16个包装盒,无法全部利用;如果允许剪开,则分法很多,例如可以将一张白卡纸一分为二,用8张半做盒身,11张半做盒底盖,可以做成盒身17个,盒底盖34个,正好配套成17个包装盒,较充分地利用了材料.问题2:小明在拼图时,发现8个大小一样的长方形,恰好可以拼成如下图所示的一个大的长方形.小红看见了,说:“我来试一试”,结果小红拼成如下图所示的正方形,但中间还留有一个边长刚好为2mm的小正方形,你能解释一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论