2024届山东省微山县联考九年级数学第一学期期末学业质量监测试题含解析_第1页
2024届山东省微山县联考九年级数学第一学期期末学业质量监测试题含解析_第2页
2024届山东省微山县联考九年级数学第一学期期末学业质量监测试题含解析_第3页
2024届山东省微山县联考九年级数学第一学期期末学业质量监测试题含解析_第4页
2024届山东省微山县联考九年级数学第一学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省微山县联考九年级数学第一学期期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.一个铁制零件(正方体中间挖去一个圆柱形孔)如图放置,它的左视图是()A.B.C.D.2.已知点P(a,b)是平面直角坐标系中第四象限的点,则化简+|b-a|的结果是()A. B.a C. D.3.如图,菱形的边的垂直平分线交于点,交于点,连接.当时,则()A. B. C. D.4.如图,△ABC中,点D、E分别在边AB、BC上,DE∥AC,若DB=4,AB=6,BE=3,则EC的长是()A.4 B.2 C. D.5.二次函数y=﹣x2+2mx(m为常数),当0≤x≤1时,函数值y的最大值为4,则m的值是()A.±2 B.2 C.±2.5 D.2.56.为了考察某种小麦的长势,从中抽取了5株麦苗,测得苗高(单位:cm)为:10、16、8、17、19,则这组数据的极差是()A.8 B.9 C.10 D.117.如图,D,E分别是△ABC的边AB,AC上的中点,CD与BE交于点O,则S△DOE:S△BOC的值为()A. B. C. D.8.铅球运动员掷铅球的高度y(m)与水平距离x(m)之间的函数关系式为y=-x2+x+.则该运动员此次掷铅球的成绩是()A.6m B.12m C.8m D.10m9.如图,CD是⊙O的直径,已知∠1=30°,则∠2等于()A.30° B.45° C.60° D.70°10.已知线段MN=4cm,P是线段MN的黄金分割点,MP>NP,那么线段MP的长度等于()A.(2+2)cm B.(2﹣2)cm C.(+1)cm D.(﹣1)cm二、填空题(每小题3分,共24分)11.在平面直角坐标系中,已知点A(-6,3),B(9,0),以原点O为位似中心,相似比为,把△ABO缩小,则点A对应点A′的坐标是__________.12.小华在距离路灯6米的地方,发现自己在地面上的影长是2米,若小华的身高为1.6米,那么路灯离地面的高度是_____米.13.如图,,如果,,,那么___________.14.如图,在中,,点是边的中点,,则的值为___________.15.如图,是的直径,是的切线,交于点,,,则______.16.如图,将半径为4cm的圆折叠后,圆弧恰好经过圆心,则折痕的长为_____.17.若△ABC∽△DEF,,且相似比为1:2,则△ABC与△DEF面积比_____________.18.如图,在中,,分别是,上的点,平分,交于点,交于点,若,且,则_______.三、解答题(共66分)19.(10分)如图,在Rt△ABC中,∠C=90°,BC=5,AC=12,求∠A的正弦值、余弦值和正切值.20.(6分)某软件开发公司开发了A、B两种软件,每种软件成本均为1400元,售价分别为2000元、1800元,这两种软件每天的销售额共为112000元,总利润为28000元.(1)该店每天销售这两种软件共多少个?(2)根据市场行情,公司拟对A种软件降价销售,同时提高B种软件价格.此时发现,A种软件每降50元可多卖1件,B种软件每提高50元就少卖1件.如果这两种软件每天销售总件数不变,那么这两种软件一天的总利润最多是多少?21.(6分)(1)计算:4sin260°+tan45°-8cos230°(2)在Rt△ABC中,∠C=90°.若∠A=30°,b=5,求a、c.22.(8分)已知:反比例函数和一次函数,且一次函数的图象经过点.(1)试求反比例函数的解析式;(2)若点在第一象限,且同时在上述两个函数的图象上,求点的坐标.23.(8分)已知抛物线,求证:无论为何值,抛物线与轴总有两个交点.24.(8分)如图,山顶有一塔AB,塔高33m.计划在塔的正下方沿直线CD开通穿山隧道EF,从与E点相距80m的C处测得A、B的仰角分别为27°、22°,从与F点相距50m的D处测得A的仰角为45°.求隧道EF的长度.(参考数据:tan22°≈0.40,tan27°≈0.51)25.(10分)如图,是的外接圆,为直径,的平分线交于点,过点的切线分别交,的延长线于点,,连接.(1)求证:;(2)若,,求的半径.26.(10分)如图,△ABC中,AB=AC=10,BC=6,求sinB的值.

参考答案一、选择题(每小题3分,共30分)1、C【解析】试题解析:从左边看一个正方形被分成三部分,两条分式是虚线,故C正确;故选C.考点:简单几何体的三视图.2、A【解析】根据第四象限的点的横坐标是正数,纵坐标是负数,求解即可.【详解】∵点P(a,b)是平面直角坐标系中第四象限的点,∴a>0,b<0,∴b−a<0,∴+|b-a|=−b−(b−a)=−b−b+a=−2b+a=a−2b,故选A.【点睛】本题考查点的坐标,二次根式的性质与化简,解题的关键是根据象限特征判断正负.3、B【分析】连接BF,根据菱形的对角线平分一组对角线可得∠BAC=50°,根据线段垂直平分线上的点到两端点的距离相等可得AF=BF,根据等边对等角可得∠FBA=∠FAB,再根据菱形的邻角互补求出∠ABC,然后求出∠CBF,最后根据菱形的对称性可得∠CDF=∠CBF.【详解】解:如图,连接BF,

在菱形ABCD中,∠BAC=∠BAD=×100°=50°,

∵EF是AB的垂直平分线,

∴AF=BF,

∴∠FBA=∠FAB=50°,

∵菱形ABCD的对边AD∥BC,

∴∠ABC=180°-∠BAD=180°-100°=80°,

∴∠CBF=∠ABC-∠ABF=80°-50°=30°,

由菱形的对称性,∠CDF=∠CBF=30°.

故选:B.【点睛】本题考查了菱形的性质,线段垂直平分线上的点到两端点的距离相等的性质,等边对等角的性质,熟记各性质是解题的关键.4、C【分析】根据平行线分线段成比例定理,可得DB:AB=BE:BC,又由DB=4,AB=6,BE=3,即可求得答案.【详解】解:∵DE∥AC,∴DB:AB=BE:BC,∵DB=4,AB=6,BE=3,∴4:6=3:BC,解得:BC=,∴EC=BC﹣BE=.故选C.【点睛】本题考查平行线分线段成比例定理.解题的关键是注意掌握各比例线段的对应关系.5、D【解析】分m≤0、m≥1和0≤m≤1三种情况,根据y的最大值为4,结合二次函数的性质求解可得.【详解】y=﹣x2+2mx=﹣(x﹣m)2+m2(m为常数),①若m≤0,当x=0时,y=﹣(0﹣m)2+m2=4,m不存在,②若m≥1,当x=1时,y=﹣(1﹣m)2+m2=4,解得:m=2.5;③若0≤m≤1,当x=m时,y=m2=4,即:m2=4,解得:m=2或m=﹣2,∵0≤m≤1,∴m=﹣2或2都舍去,故选:D.【点睛】此题主要考查二次函数的图像与性质,解题的关键是根据题意分三种情况讨论.6、D【分析】计算最大数19与最小数8的差即可.【详解】19-8=11,故选:D.【点睛】此题考查极差,即一组数据中最大值与最小值的差.7、C【分析】DE为△ABC的中位线,则DE∥BC,DE=BC,再证明△ODE∽△OCB,由相似三角形的性质即可得到结论.【详解】解:∵点D、E分别为AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,DE=BC,∴∠ODE=∠OCB,∠OED=∠OBC,∴△ODE∽△OCB,∴,故选:C.【点睛】本题考查了相似三角形的判定与性质,三角形中位线定理,熟练掌握相似三角形的性质定理是解题的关键.8、D【分析】依题意,该二次函数与x轴的交点的x值为所求.即在抛物线解析式中.令y=0,求x的正数值.【详解】把y=0代入y=-x1+x+得:-x1+x+=0,解之得:x1=2,x1=-1.又x>0,解得x=2.故选D.9、C【解析】试题分析:如图,连接AD.∵CD是⊙O的直径,∴∠CAD=90°(直径所对的圆周角是90°);在Rt△ABC中,∠CAD=90°,∠1=30°,∴∠DAB=60°;又∵∠DAB=∠2(同弧所对的圆周角相等),∴∠2=60°考点:圆周角定理10、B【解析】根据黄金分割的定义进行作答.【详解】由黄金分割的定义知,,又MN=4,所以,MP=22.所以答案选B.【点睛】本题考查了黄金分割的定义,熟练掌握黄金分割的定义是本题解题关键.二、填空题(每小题3分,共24分)11、(—2,1)或(2,—1)【分析】根据位似图形的性质,只要点A的横、纵坐标分别乘以或﹣即可求出结果.【详解】解:∵点A(-6,3),B(9,0),以原点O为位似中心,相似比为把△ABO缩小,∴点A对应点的坐标为(—2,1)或(2,—1).故答案为:(—2,1)或(2,—1).【点睛】本题考查了位似图形的性质,属于基本题型,注意分类、掌握求解的方法是关键.12、6.1【解析】解:设路灯离地面的高度为x米,根据题意得:,解得:x=6.1.故答案为6.1.13、1【分析】由于l1∥l2∥l3,根据平行线分线段成比例得到,然后把数值代入求出DF.【详解】解:∵l1∥l2∥l3,

∴,即,

∴DE=1.故答案为:1【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.14、【分析】作高线DE,利用勾股定理求出AD,AB的值,然后证明,求DE的长,再利用三角函数定义求解即可.【详解】过点D作于E∵点是边的中点,∴,在中,由∴∴由勾股定理得∵∴∵∴∴∴∴∴故答案为:.【点睛】本题考查了三角函数的问题,掌握勾股定理和锐角三角函数的定义是解题的关键.15、【分析】因是的切线,利用勾股定理即可得到AB的值,是的直径,则△ABC是直角三角形,可证得△ABC∽△APB,利用相似的性质即可得出BC的结果.【详解】解:∵是的切线∴∠ABP=90°∵,∴AB2+BP2=AP2∴AB=∵是的直径∴∠ACB=90°在△ABC和△APB中∴△ABC∽△APB∴∴∴故答案为:【点睛】本题主要考查的是圆的性质以及相似三角形的性质和判定,掌握以上几点是解此题的关键.16、4cm【分析】连接AO,过O作OD⊥AB,交于点D,交弦AB于点E,根据折叠的性质可知OE=DE,再根据垂径定理可知AE=BE,在Rt△AOE中利用勾股定理即可求出AE的长,进而可求出AB的长.【详解】解:如图,连接AO,过O作OD⊥AB,交于点D,交弦AB于点E,∵折叠后恰好经过圆心,∴OE=DE,∵⊙O的半径为4cm,∴OE=OD=×4=2(cm),∵OD⊥AB,∴AE=AB,在Rt△AOE中,AE===2(cm).∴AB=2AE=4cm.故答案为:4cm.【点睛】本题考查了垂径定理,翻折变换的性质以及勾股定理,正确作出辅助线是解题的关键.17、1:1【分析】由题意直接根据相似三角形面积的比等于相似比的平方进行求值即可.【详解】解:∵△ABC∽△DEF,且△ABC与△DEF的相似比为1:2,∴△ABC与△DEF的面积比为1:1,故答案为:1:1.【点睛】本题考查的是相似三角形的性质,熟练掌握相似三角形面积的比等于相似比的平方是解题的关键.18、3:1【分析】根据题意利用相似三角形的性质即相似三角形的对应角平分线的比等于相似比即可解决问题.【详解】解:∵∠DAE=∠CAB,∠AED=∠B,∴△ADE∽△ACB,∵GA,FA分别是△ADE,△ABC的角平分线,∴(相似三角形的对应角平分线的比等于相似比),AG:FG=3:2,∴AG:AF=3:1,∴DE:BC=3:1,故答为3:1.【点睛】本题考查相似三角形的判定和性质、解题的关键是灵活运用所学知识解决问题,属于中考常考题型,难度一般.三、解答题(共66分)19、sinA=,cosA=,tanA=.【分析】根据勾股定理求出AB,根据锐角三角函数的定义解答即可.【详解】由勾股定理得,,则,,.【点睛】本题考查解直角三角形,解题的关键是利用勾股定理求出AB的长.20、(1)60;(2)1【分析】(1)设每天销售A种软件个,B种软件个,分别根据每天的销售额共为112000元,总利润为28000元,列方程组即可解得;(2)由这两种软件每天销售总件数不变,则设A种软件每天多销售个,则B种软件每天少销售个,总利润为,根据:每种软件的总利润=每个利润销量,得到二次函数求最值即可.【详解】(1)设每天销售A种软件个,B种软件个.由题意得:,解得:,.∴该公司每天销售这两种软件共60个.(2)设这两种软件一天的总利润为,A种软件每天多销售个,则B种软件每天少销售个.W==(0≤m≤12).当时,的值最大,且最大值为1.∴这两种软件一天的总利润最多为1元.【点睛】本题考查了二元一次方程组的应用,二次函数的应用,解题的关键是读懂题目的意思,根据题干找出合适的等量关系.21、(1)2;(2)a=5,c=1【分析】(1)分别把各特殊角的三角函数值代入,再根据二次根式混合运算的法则进行计算即可;(2)由直角三角形的性质可得c=2a,由勾股定理可求解.【详解】(1)原式=4×()2+1﹣8×()2=3+1﹣6=﹣2;(2)∵∠C=90°,∠A=30°,∴c=2a.∵a2+b2=c2,∴,∴3a2=75,∴a=5(负数舍去),∴c=1.【点睛】本题考查了直角三角形的性质,勾股定理,特殊角的三角函数值,熟记各特殊角度的三角函数值是解答本题的关键.22、(1);(2).【分析】(1)将点代入中即可求出k的值,求得反比例函数的解析式;(2)根据题意列出方程组,根据点在第一象限解出方程组即可.【详解】(1)一次函数的图象经过点反比例函数的解析式为(2)由已知可得方程组,解得或经检验,当或时,,所以方程组的解为或∵点在第一象限∴【点睛】本题考查了一次函数和反比例函数的问题,掌握一次函数和反比例函数的性质、解二元一次方程组的方法是解题的关键.23、证明见解析【分析】求得判别式并分解得到平方与正数的和,得到判别式大于0即可证明.【详解】证明:.无论为何值,抛物线与轴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论