能力提升精练课件:1 时 验证勾股定理及其简单计算_第1页
能力提升精练课件:1 时 验证勾股定理及其简单计算_第2页
能力提升精练课件:1 时 验证勾股定理及其简单计算_第3页
能力提升精练课件:1 时 验证勾股定理及其简单计算_第4页
能力提升精练课件:1 时 验证勾股定理及其简单计算_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一章勾股定理1探索勾股定理第2课时验证勾股定理及其简单计算能力提升精练1探索勾股定理1.下列选项中(图中三角形都是直角三角形),不能用来验证勾股定理的是(

)D2.[2020陕西宝鸡期中]如图,在高为3米,斜坡长为5米的楼梯台阶上铺地毯,则地毯的长度为(

)

A.4米

B.5米

C.6米

D.7米【解析】在Rt△ABC中,AC2=AB2-BC2=42,所以AC=4米,所以地毯的长度为AC+BC=7米.故选D.3.如图,一条小巷的左右两侧是竖直的墙壁,一架梯子斜靠在左墙时,梯子底端到左墙脚的距离为0.7米,顶端距离地面2.4米.若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面1.5米,则小巷的宽度为(

)A.2.7米

B.2.5米

C.2米

D.1.8米【解析】如图,在Rt△ADE中,∠AED=90°,AE=0.7米,DE=2.4米,所以AD2=AE2+DE2=0.72+2.42,所以AD=2.5米,所以AC=2.5米.在

Rt△ABC

中,∠ABC=90°,BC=1.5米,所以AB2=AC2-BC2=2.52-1.52,所以AB=2米,所以BE=AE+AB=2.7米,即小巷的宽度为2.7米.故选A.4.如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是(

)

A.72 B.52 C.80 D.76【解析】设“数学风车”中的四个大直角三角形的斜边长为x,则x2=122+52=169,所以x=13,所以“数学风车”的外围周长是(13+6)×4=76.故选D.5.[2021重庆沙坪坝区期末]在《算法统宗》中有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几.”此问题可理解为:如图,有一架秋千,当它静止时,踏板离地的垂直高度AB为1尺,将它往前水平推送10尺时,即A'C=10尺,秋千的踏板离地的垂直高度A'D就和身高5尺的人一样高.若运动过程中秋千的绳索始终拉得很直,则绳索OA的长为

.

【解析】设绳索OA的长为x尺,则OC的长为(x+1-5)尺,即OC=(x-4)尺.在

Rt△OCA'

中,OC2+A'C2=OA'2,即(x-4)2+102=x2,解得x=14.5.故绳索OA的长为14.5尺.6.如图,在长方形ABCD中,AD=6,AB=10,若将长方形ABCD沿DE折叠,使点C落在AB边上的点F处,则线段CE的长为

.

本题是纸片折叠问题,在解答此类问题时,要注意在折叠过程中包含了轴对称、全等,从而运用相关性质构建相关角或线段之间的关系,再对其进行分析与解题.名师点睛7.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小明灵感,他惊喜地发现,当四个全等的直角三角形如图摆放时,可以用“面积法”来证明a2+b2=c2.请你写出证明过程.

8.在△ABC中,BC=a,AC=b,AB=c.若∠ACB=90°,如图1所示,根据勾股定理,得a2+b2=c2.若△ABC不是直角三角形,如图2和图3所示.请你类比勾股定理,试猜想a2+b2与c2的关系,并证明你的结论.【解析】若△ABC是锐角三角形,则a2+b2>c2.若△ABC是钝角三角形,∠C为钝角,则a2+b2<c2.当△ABC是锐角三角形时,证明如下:在题图2中,过点A作AD⊥BC,垂足为D.设CD的长为x,则BD=a-x.根据勾股定理,得b2-x2=AD2=c2-(a-x)2,即b2-x2=c2-a2+2ax-x2,所以a2+b2=c2+2ax.因为a>0,x>0,所以2ax>0,所以a2+b2>c2.当△ABC是钝角三角形,∠C为钝角时,证明如下:在题图3中,过点B作BD⊥AC,交AC的延长线于点D.设CD的长为x,则有BD2=a2-x2.在Rt

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论