专题09 动态运动问题(精练)-2019年中考数学高频考点突破全攻略(解析版)_第1页
专题09 动态运动问题(精练)-2019年中考数学高频考点突破全攻略(解析版)_第2页
专题09 动态运动问题(精练)-2019年中考数学高频考点突破全攻略(解析版)_第3页
专题09 动态运动问题(精练)-2019年中考数学高频考点突破全攻略(解析版)_第4页
专题09 动态运动问题(精练)-2019年中考数学高频考点突破全攻略(解析版)_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一、选择题(10×3=30分)1.如图,已知在四边形ABCD中,R,P分别是BC,CD上的点,E,F分别是AP,RP的中点,当点P在CD上从点C向点D移动而点R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段EF的长不变D.线段EF的长与点P的位置有关【解析】连结AR,则EF=eq\f(1,2)AR,AR不变,∴EF不变.2.如图,在平面直角坐标系中,矩形ABCD的边BC在x轴的正半轴上,点B在点C的左侧,直线y=kx经过点A(3,3)和点P,且OP=6eq\r(2).将直线y=kx沿y轴向下平移得到直线y=kx+b,若点P落在矩形ABCD的内部,则b的取值范围是()A.0<b<3B.-3<b<0C.-6<b<-3D.-3<b<3【分析】

作PE⊥AD于E交BC于F,先求出直线y=kx以及点P坐标,再确定点E、F坐标,代入y=x+b中即可解决问题.

把点E(6,3),点F(6,0)分别代入y=x+b中,得到b=-3或-6,

∴点P落在矩形ABCD的内部,∴-6<b<-3.故选C.3.(2018•广安•3分)已知点P为某个封闭图形边界上的一定点,动点M从点P出发,沿其边界顺时针匀速运动一周,设点M的运动时间为x,线段PM的长度为y,表示y与x的函数图象大致如图所示,则该封闭图形可能是()A. B. C. D.4.如图,∠MON=90°,矩形ABCD的顶点A,B分别在OM,ON上,当点B在边ON上运动时,点A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1.运动过程中,点D到点O的最大距离为(A)A.eq\r(2)+1B.eq\r(5)C.eq\f(\r(145),5)D.eq\f(5,2)【解析】如解图,取AB的中点E,连结OE,DE.∵OD<OE+DE,∴当O,E,D三点共线时,点D与点O的距离最大.此时,∵AB=2,∴OE=AE=eq\f(1,2)AB=1.∵BC=1,∴AD=1,∴DE=eq\r(AD2+AE2)=eq\r(12+12)=eq\r(2),∴DE+OE=eq\r(2)+1.∴OD的最大值为eq\r(2)+1.学科*网5.(2018•莱芜•3分)如图,边长为2的正△ABC的边BC在直线l上,两条距离为l的平行直线a和b垂直于直线l,a和b同时向右移动(a的起始位置在B点),速度均为每秒1个单位,运动时间为t(秒),直到b到达C点停止,在a和b向右移动的过程中,记△ABC夹在a和b之间的部分的面积为s,则s关于t的函数图象大致为()A. B. C. D.【解答】解:如图①,当0≤t<1时,BE=t,DE=t,∴s=S△BDE=×t×t=;如图②,当1≤t<2时,CE=2﹣t,BG=t﹣1,∴DE=(2﹣t),FG=(t﹣1),∴s=S五边形AFGED=S△ABC﹣S△BGF﹣S△CDE=×2×﹣×(t﹣1)×(t﹣1)﹣×(2﹣t)×(2﹣t)=﹣+3t﹣;如图③,当2≤t≤3时,CG=3﹣t,GF=(3﹣t),6.如图,水平地面上有一面积为eq\f(15,2)πcm2的扇形AOB,半径OA=3cm,且OA与地面垂直.在没有滑动的情况下,将扇形向右滚动大半圈至与三角形石块BDE接触为止,此时,扇形与地面的接触点为C,已知∠BCD=30°,则点O移动的距离为()【A.2πcmB.4πcmC.eq\f(9,2)πcmD.52πcm解:∵S扇形=eq\f(1,2)lR=eq\f(1,2)l×3=eq\f(15,2)π,∴l=5π,即eq\o(AmB,\s\up8(︵))的长leq\o(AmB,\s\up8(︵))=eq\f(nπR,180)=eq\f(nπ×3,180)=5π,∴n=300.连结OC.∵∠BCD=30°,∴∠BOC=2∠BCD=60°.∴eq\o(AmB,\s\up8(︵))所对圆心角的度数为300°-60°=240°.点O移动的距离即eq\o(AmC,\s\up8(︵))的长,leq\o(AmC,\s\up8(︵))=eq\f(240π×3,180)=4π.7.(2018·辽宁省葫芦岛市)如图,在▱ABCD中,AB=6,BC=10,AB⊥AC,点P从点B出发沿着B→A→C的路径运动,同时点Q从点A出发沿着A→C→D的路径以相同的速度运动,当点P到达点C时,点Q随之停止运动,设点P运动的路程为x,y=PQ2,下列图象中大致反映y与x之间的函数关系的是()A.B.C.D.8.(2018•泰安)如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A.3 B.4 C.6 D.8【分析】由Rt△APB中AB=2OP知要使AB取得最小值,则PO需取得最小值,连接OM,交⊙M于点P′,当点P位于P′位置时,OP′取得最小值,据此求解可得.【解答】解:∵PA⊥PB,∴∠APB=90°,∵AO=BO,∴AB=2PO,若要使AB取得最小值,则PO需取得最小值,连接OM,交⊙M于点P′,当点P位于P′位置时,OP′取得最小值,过点M作MQ⊥x轴于点Q,9.(2018·辽宁省葫芦岛市)如图,在▱ABCD中,AB=6,BC=10,AB⊥AC,点P从点B出发沿着B→A→C的路径运动,同时点Q从点A出发沿着A→C→D的路径以相同的速度运动,当点P到达点C时,点Q随之停止运动,设点P运动的路程为x,y=PQ2,下列图象中大致反映y与x之间的函数关系的是()A.B.C.D.【解答】解:在Rt△ABC中,∠BAC=90°,AB=6,BC=10,∴AC==8.当0≤x≤6时,AP=6﹣x,AQ=x,∴y=PQ2=AP2+AQ2=2x2﹣12x+36;当6≤x≤8时,AP=x﹣6,AQ=x,∴y=PQ2=(AQ﹣AP)2=36;当8≤x≤14时,CP=14﹣x,CQ=x﹣8,∴y=PQ2=CP2+CQ2=2x2﹣44x+260.故选B.10.(2018•泰州)如图,平面直角坐标系xOy中,点A的坐标为(9,6),AB⊥y轴,垂足为B,点P从原点O出发向x轴正方向运动,同时,点Q从点A出发向点B运动,当点Q到达点B时,点P、Q同时停止运动,若点P与点Q的速度之比为1:2,则下列说法正确的是()A.线段PQ始终经过点(2,3)B.线段PQ始终经过点(3,2)C.线段PQ始终经过点(2,2)D.线段PQ不可能始终经过某一定点【分析】当OP=t时,点P的坐标为(t,0),点Q的坐标为(9﹣2t,6).设直线PQ的解析式为y=kx+b(k≠0),利用待定系数法求出PQ的解析式即可判断;二、填空题(6×4=24分).11.(2018•海南)如图,在平面直角坐标系中,点M是直线y=﹣x上的动点,过点M作MN⊥x轴,交直线y=x于点N,当MN≤8时,设点M的横坐标为m,则m的取值范围为.【分析】先确定出M,N的坐标,进而得出MN=|2m|,即可建立不等式,解不等式即可得出结论.【解答】解:∵点M在直线y=﹣x上,∴M(m,﹣m),∵MN⊥x轴,且点N在直线y=x上,∴N(m,m),∴MN=|﹣m﹣m|=|2m|,∵MN≤8,∴|2m|≤8,∴﹣4≤m≤4,故答案为:﹣4≤m≤4.学科*网12.如图,在△ABC中,∠C=90°,M是AB的中点,动点P从点A出发,沿AC方向匀速运动到终点C,动点Q从点C出发,沿CB方向匀速运动到终点B.已知P,Q两点同时出发,并同时到达终点,连结MP,MQ,PQ.在整个运动过程中,△MPQ的面积大小变化情况是。【解析】如解图,连结CM.13.(2018·辽宁省盘锦市)如图①,在矩形ABCD中,动点P从A出发,以相同的速度,沿A→B→C→D→A方向运动到点A处停止.设点P运动的路程为x,△PAB面积为y,如果y与x的函数图象如图②所示,则矩形ABCD的面积为.【解答】解:从图象②和已知可知:AB=4,BC=10﹣4=6,所以矩形ABCD的面积是4×6=24.故答案为:24.14.(2016·四川内江)如图12所示,已知点C(1,0),直线y=-x+7与两坐标轴分别交于A,B两点,D,E分别是AB,OA上的动点,则△CDE周长的最小值是______.xxyO答案图CBAEDC1C2故答案为:10.15.(2018•宜宾)在△ABC中,若O为BC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P在以DE为直径的半圆上运动,则PF2+PG2的最小值为.【分析】设点M为DE的中点,点N为FG的中点,连接MN,则MN、PM的长度是定值,利用三角形的三边关系可得出NP的最小值,再利用PF2+PG2=2PN2+2FN2即可求出结论.【解答】解:设点M为DE的中点,点N为FG的中点,连接MN交半圆于点P,此时PN取最小值.∵DE=4,四边形DEFG为矩形,∴GF=DE,MN=EF,∴MP=FN=DE=2,∴NP=MN﹣MP=EF﹣MP=1,∴PF2+PG2=2PN2+2FN2=2×12+2×22=10.16.(2016·四川眉山·3分)如图,已知点A是双曲线在第三象限分支上的一个动点,连结AO并延长交另一分支于点B,以AB为边作等边三角形ABC,点C在第四象限内,且随着点A的运动,点C的位置也在不断变化,但点C始终在双曲线上运动,则k的值是.【解答】解:∵双曲线的图象关于原点对称,∴点A与点B关于原点对称,∴OA=OB,连接OC,如图所示,∵△ABC是等边三角形,OA=OB,∴OC⊥AB.∠BAC=60°,∴tan∠OAC==,∴OC=OA,∵点C在双曲线上,∴k=xy,∵点C在第四象限,∴FC=x,OF=﹣y.∴FC•OF=x•(﹣y)=﹣xy=﹣,故答案为:﹣3.三、解答题(共46分).17.如图,矩形ABCD的两边长AB=18cm,AD=4cm,点P,Q分别从A,B同时出发,P在边AB上沿AB方向以2cm/s的速度向点B做匀速运动,Q在边BC上沿BC方向以1cm/s的速度向点C做匀速运动.设运动时间为x(s),△PBQ的面积为y(cm2).2(1)求y关于x的函数表达式,并写出x的取值范围.(2)求△PBQ的面积的最大值.18.(2018·辽宁省抚顺市)(12.00分)如图,△ABC中,AB=BC,BD⊥AC于点D,∠FAC=∠ABC,且∠FAC在AC下方.点P,Q分别是射线BD,射线AF上的动点,且点P不与点B重合,点Q不与点A重合,连接CQ,过点P作PE⊥CQ于点E,连接DE.(1)若∠ABC=60°,BP=AQ.①如图1,当点P在线段BD上运动时,请直接写出线段DE和线段AQ的数量关系和位置关系;②如图2,当点P运动到线段BD的延长线上时,试判断①中的结论是否成立,并说明理由;(2)若∠ABC=2α≠60°,请直接写出当线段BP和线段AQ满足什么数量关系时,能使(1)中①的结论仍然成立(用含α的三角函数表示).(2)先判断出,∠PAQ=90°﹣∠ACQ,∠BAP=90°﹣∠ACQ,进而得出∠BCP=∠ACQ,即可判断出进而判断出△BPC∽△AQC,最后用锐角三角函数即可得出结论.学科*网【解答】解:(1)①DE=AQ,DE∥AQ,理由:连接PC,PQ,在△ABC中,AB=AC,∠ABC=60°,∴△ABC是等边三角形,∴∠ACB=60°,AC=BC,∵AB=BC,BD⊥AC,∴AD=CD,∠ABD=∠CBD=∠BAC,∵∠CAF=∠ABC,∴∠CBP=∠CAQ,在△BPC和△AQC中,,∴△BPC≌△AQC(SAS),∴PC=QC,∠BPC=∠ACQ,∴∠PCQ=∠PCA+∠AQC=∠PCA+∠BCP=∠ACB=60°,∴△PCQ是等边三角形,∵PE⊥CQ,∴CE=QE,∵AD=CD,∴DE=AQ,DE∥AQ;②DE∥AQ,DE=AQ,理由:如图2,连接PQ,PC,同①的方法得出DE∥AQ,DE=AQ;∴以点P为圆心,PA为半径的圆必过A,Q,C,∴∠APQ=2∠ACQ,∵PA=PQ,∴∠PAQ=∠PQA=(180°﹣∠APQ)=90°﹣∠ACQ,∵∠CAF=∠ABD,∠ABD+∠BAD=90°,∴∠BAQ=90°,∴∠BAP=90°﹣∠PAQ=90°﹣∠ACQ,易知,∠BCP=∠BAP,∴∠BCP=∠ACQ,∵∠CBP=∠CAQ,∴△BPC∽△AQC,∴=,在Rt△BCD中,sinα=,∴=2sinα,∴AQ=2BP•sinα.19.(2018·辽宁省葫芦岛市)在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系;(2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由(3)若|CF﹣AE|=2,EF=2,当△POF为等腰三角形时,请直接写出线段OP的长.【解答】解:(1)如图1中,延长EO交CF于K.∵AE⊥BE,CF⊥BE,∴AE∥CK,∴∠EAO=∠KCO.∵OA=OC,∠AOE=∠COK,∴△AOE≌△COK,∴OE=OK.∵△EFK是直角三角形,∴OF=EK=OE.(2)如图2中,延长EO交CF于K.∵∠ABC=∠AEB=∠CFB=90°,∴∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF.∵AB=BC,∴△ABE≌△BCF,∴BE=CF,AE=BF.∵△AOE≌△COK,∴AE=CK,OE=OK,∴FK=EF,∴△EFK是等腰直角三角形,∴OF⊥EK,OF=OE.(3)如图3中,延长EO交CF于K.作PH⊥OF于H.综上所述:O

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论